Application of the PCB-Embedding Technology to a 3.3 kW Power Factor Corrector
APEC 2019, Anaheim, California

Rémy CAILLAUD¹, Johan LE LESLÉ², Cyril BUTTAY¹, Florent MOREL¹, Roberto MRAD², Nicolas DEGRENNE², Stefan MOLLOV²

¹Laboratoire Ampère, Lyon, France
²Mitsubishi Electric Research Centre Europe, Rennes, France

19 – 21 March 2019
Introduction

PCB Embedding Technology – A Review

Presentation of an embedded converter

Conclusions
Introduction

PCB Embedding Technology – A Review

Presentation of an embedded converter

Conclusions
Power electronics – Areas for Progress

◮ Excellent active devices are now available (SiC, GaN)
◮ Many topologies introduced over the years;
 ▶ Recent changes: multi-cellular structures
◮ Integration and Packaging are the main areas for progress [1, 3, 4, 5]
 ▶ Reduce size and circuit parasitics, improve thermal management . . .
 ▶ Manage increased interconnection density
Why Embedding?

- Optimize thermal management
 - Heat sources closer to heatsink
 - Dual side cooling
- Improve performance
 - Shorter interconnects
 - Lower inductances
- Reduce size
 - Use substrate volume
- Manage complex interconnects
 - Batch process
 - Take advantage of PCB design tools
Outline

Introduction

PCB Embedding Technology – A Review

Presentation of an embedded converter

Conclusions
Most embedding effort on power dies:
- Most power density
- Fastest voltage/current transients
- Requires special finish on dies
 - 5-10 µm Cu (not standard)
 - Buffer for UV laser
 - Also for microetch in plating step
- Backside connection by sintering or vias
 - Sintering compatible with standard dies
 - Vias require Cu finish and adhesive

Left and above, source: Ostmann [6]
Embedding of Power Dies – 1

- Most embedding effort on power dies:
 - Most power density
 - Fastest voltage/current transients
- Requires special finish on dies
 - 5-10 µm Cu (not standard)
 - Buffer for UV laser
 - Also for microetch in plating step
- Backside connection by sintering or vias
 - Sintering compatible with standard dies
 - Vias require Cu finish and adhesive

Left and above, source: Ostmann [6]
Embedding of Power Dies – 1

- Most embedding effort on power dies:
 - Most power density
 - Fastest voltage/current transients
- Requires special finish on dies
 - 5-10 µm Cu (not standard)
 - Buffer for UV laser
 - Also for microetch in plating step
- Backside connection by sintering or vias
 - Sintering compatible with standard dies
 - Vias require Cu finish and adhesive

Left and above, source: Ostmann [6]
Embedding of Power Dies – 2

Some alternative techniques

▸ Stud bumps and machining

▸ Foam interposer

▸ Mechanical drilling

Source: Hoene et al. [7]
Embedding of Power Dies – 2

Some alternative techniques

- Stud bumps and machining
- Foam interposer
- Mechanical drilling

Source: Hoene et al. [7]

Source: Pascal et al. [8]
Embedding of Power Dies – 2

Some alternative techniques

▸ Stud bumps and machining
▸ Foam interposer
▸ Mechanical drilling

Source: Hoene et al. [7]
Source: Pascal et al. [8]
Source: Sharma et al. [9]
Embedding of Formed Components – Inductors

Magnetic Layer

- Relies on magnetic/polymer film → Low μ_r
- Limited to 10 – 100 W

Planar magnetic components

- Very common, but not really embedded
- High performance
- Compatible with low (W) or high power (kW)

Embedded core

- Strong industrial development (Murata, AT&S, Würth)
- Currently limited to low power (W)
Embedding of Inserted Components

Soldered components:
- Suits most Surface-Mount Devices
- Connections with regular vias

Vias to components:
- Requires components with Cu finish
- More compact (vias on components)

Source: Ostmann [6]
Embedding of Inserted Components

Soldered components:
► Suits most Surface-Mount Devices
► Connections with regular vias

Vias to components:
► Requires components with Cu finish
► More compact (vias on components)

For power electronics
► Embedding of “large” capacitors (1 µF range)
► Embedding of gate driver ICs and peripheral components, control

Source: Ostmann [6]
Thermal Management of Embedded Components

- Poor thermal conductivity of FR4 compared to ceramics (1–7 W m$^{-1}$ K$^{-1}$ vs 150 W m$^{-1}$ K$^{-1}$ for AlN)
- In theory better breakdown field (\approx 50 kV mm$^{-1}$ vs. 20 kV mm$^{-1}$)
Thermal Management of Embedded Components

- Poor thermal conductivity of FR4 compared to ceramics (1–7 W m$^{-1}$ K$^{-1}$ vs 150 W m$^{-1}$ K$^{-1}$ for AlN)
- In theory better breakdown field (\approx 50 kV mm$^{-1}$ vs. 20 kV mm$^{-1}$)

To improve through-plane heat conduction:
- Micro-vias (electrically conductive), Filled cores (e.g. alumina)
Thermal Management of Embedded Components

- Poor thermal conductivity of FR4 compared to ceramics (1–7 W m$^{-1}$ K$^{-1}$ vs 150 W m$^{-1}$ K$^{-1}$ for AlN)
- In theory better breakdown field (≈ 50 kV mm$^{-1}$ vs. 20 kV mm$^{-1}$)

To improve through-plane heat conduction:
- Micro-vias (electrically conductive), Filled cores (e.g. alumina)

To increase in-plane heat conduction:
- Thicker copper, Anisotropic layers (Graphite), Dual-phase

Source: left: Liew et al. [12]; right: Silvano et al. [13]
Reliability of PCB with Embedded Components

- Temperature-related issues
 - Rapid degradation above 190 °C
 - Hydrocarbon, polyimide-based PCBs resistant up to 250 °C

- Thermal cycling issues
 - CTE of PCBs much higher than ceramic or semiconductor
 - Availability of low-CTE materials
 - lacks data on large components

- Other PCB-specific issues
 - moisture absorption,
 - conductive anodic filaments...

⇒ No showstopper identified yet!
Reliability of PCB with Embedded Components

- **Temperature-related issues**
 - Rapid degradation above 190 °C
 - Hydrocarbon, polyimide-based PCBs resistant up to 250 °C

- **Thermal cycling issues**
 - CTE of PCBs much higher than ceramic or semiconductor
 - Availability of low-CTE materials
 - Lacks data on large components

- **Other PCB-specific issues**
 - Moisture absorption
 - Conductive anodic filaments...

- **No showstopper identified yet!**

Source: Randoll et al. [14]. Superimposition of reliability data for dies in PCB on Infineon’s results for standard power modules

Source: Perrin et al. [15]. Left: standard FR4, right: low-CTE. Magnetic core embedded, after 1000 thermal cycles (-50/200 °C)
Reliability of PCB with Embedded Components

- Temperature-related issues
 - Rapid degradation above 190 °C
 - Hydrocarbon, polyimide-based PCBs resistant up to 250 °C
- Thermal cycling issues
 - CTE of PCBs much higher than ceramic or semiconductor
 - Availability of low-CTE materials
 - lacks data on large components
- Other PCB-specific issues
 - moisture absorption,
 - conductive anodic filaments...

Source: Randoll et al. [14]. Superimposition of reliability data for dies in PCB on Infineon’s results for standard power modules

Source: Perrin et al. [15]. Left: standard FR4, right: low-CTE. Magnetic core embedded, after 1000 thermal cycles (-50/200 °C)

No showstopper identified yet!
Reliability of PCB with Embedded Components

- Temperature-related issues
 - Rapid degradation above 190 °C
 - Hydrocarbon, polyimide-based PCBs resistant up to 250 °C
- Thermal cycling issues
 - CTE of PCBs much higher than ceramic or semiconductor
 - Availability of low-CTE materials
 - Lacks data on large components
- Other PCB-specific issues
 - Moisture absorption,
 - Conductive anodic filaments...
- No showstopper identified yet!

Source: Randoll et al. [14]. Superimposition of reliability data for dies in PCB on Infineon’s results for standard power modules

Source: Perrin et al. [15]. Left: standard FR4, right: low-CTE. Magnetic core embedded, after 1000 thermal cycles (-50/200 °C)
Outline

Introduction

PCB Embedding Technology – A Review

Presentation of an embedded converter

Conclusions
Bidirectional, Power Factor Converter for 3.3 kW applications

- Designed through an optimization procedure [16, 17]
 - Based on SiC power devices
 - 180 kHz switching frequency
 - 4 interleaved cells

- Discussed here: PFC cell
Physical Structure

- Inductor PCB (4.5 mm-thick)
- Driver PCB (4.5 mm-thick)
- Dies PCB (0.7 mm-thick)
- Heatsink (25 mm-thick)
- TIM (0.2 mm-thick) x 3

3-PCB structure

- Magnetic component on top
- Heatsink on bottom (natural convection)
- Power chips close to heatsink
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
 for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies
Manufacturing of the PCBs

Two board structures are used:

Thin PCB (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PCB (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PCB (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PCB (1 mm)
- for bare dies

Thick PCB (4 mm)
- for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

- **Thin** PBC (1 mm) for bare dies
- **Thick** PCB (4 mm) for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
for bare dies

Thick PCB (4 mm)
for SMD devices and inductors
Manufacturing of the PCBs

Two board structures are used:

Thin PBC (1 mm)
- for bare dies

Thick PCB (4 mm)
- for SMD devices and inductors
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5\,\text{cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: 7 × 7 × 3.5 cm³
Converter Cell Assembly

- PFC inductor (Thick)
- TIM
- Gate driver (thick)
- TIM
- Power devices PCB (thin)
- Thermal Interface Material (TIM)
- Heatsink

- Board-to-board interconnects using wires soldered in through-holes
- Final cell dimensions: $7 \times 7 \times 3.5 \text{ cm}^3$
Full converter assembly

- 4 PFC cells for a full converter
- DC capacitor bank for test only
- 4-stage EMC DM filter
- 28x7x5 cm³
Test Coupons – power devices

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness

- Good alignment
 - Gate contact
 - 500×800 µm²

- Good electrical perf.
 - Consistent $R_{DS_{on}}$ (80 mΩ)
 - No change in V_{th}
 - Low leakage current
 - (max 1.6 nA @ 1200 V)
 - Very good yield
 - (97% on 44 dies)
Test Coupons – power devices

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact
 - $500 \times 800 \mu m^2$
- Good electrical perf.
 - Consistent $R_{DS,on}$ (80 mΩ)
 - No change in V_{th}
 - Low leakage current
 - (max 1.6 nA @ 1200 V)
 - Very good yield
 - (97% on 44 dies)
Test Coupons – power devices

For SiC dies

- good quality of microvias
 - No damage to dies
 - Uniform thickness
- Good alignment
 - Gate contact
 - 500 × 800 µm²
- Good electrical perf.
 - Consistent R_{DSon} (80 mΩ)
 - No change in V_{th}
 - Low leakage current
 - (max 1.6 nA @ 1200 V)
 - Very good yield
 - (97% on 44 dies)
For SMD components:

- Test on:
 - Ceramic capacitors (3.3 µF, 25 V up to 330 nF, 500 V)
 - Packaged diodes (4.7 V Zener up to 600 V rectifier)

- Characterization:
 - No failure detected

Example: 600 V diodes for bootstrap driver
Operation of the PFC converter

- 4 interleaved PFC cells (target power $4 \times 825 \, \text{W} = 3.3 \, \text{kW}$)
- Operation at reduced power because of losses in inductors
 - Current unbalance because of differences in inductor values
Introduction

PCB Embedding Technology – A Review

Presentation of an embedded converter

Conclusions
Conclusions – Exploiting the PCB Embedding

- “All-embedded”, interleaved PFC designed
 - includes dies, driver, inductors
 - Very good production yield
 - Only issue: embedded inductors

- Full power tests ongoing
 - Tested at 400 V with planar inductors
 - Frequency behavior of embedded inductor under investigation

- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools
Conclusions – Exploiting the PCB Embedding

- “All-embedded”, interleaved PFC designed
 - includes dies, driver, inductors
 - Very good production yield
 - Only issue: embedded inductors

- Full power tests ongoing
 - Tested at 400 V with planar inductors
 - Frequency behavior of embedded inductor under investigation

- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools
Conclusions – Exploiting the PCB Embedding

- “All-embedded”, interleaved PFC designed
 - includes dies, driver, inductors
 - Very good production yield
 - Only issue: embedded inductors

- Full power tests ongoing
 - Tested at 400 V with planar inductors
 - Frequency behavior of embedded inductor under investigation

- Next step: better use of embedding
 - Keep some components on the surface
 - Improve design for manufacturing
 - Improve design tools

Thank you for your attention.

cyril.buttay@insa-lyon.fr

This work was funded by Mitsubishi Electric Research Centre Europe and the French Agency for Technology and Research (ANRT).