10A DC-DC Point-Of-Load Power Modules with Integrated Inductors and Capacitors less than 1.0mm Height for Mobile Platforms
Outline

• Motivation
 • Platform level challenges: space constraints and PDN bottlenecks
 • Power, Performance, and Area benefits of distributed power solutions

• System Level Considerations
 • Optimization for distributed, more granular power domains
 • Packaging Technology Solution

• Measurements
 • SiP and Power Module Evaluation

• Conclusions
Motivation

• Distributed Ultra-Compact Power Solutions
 • 5A-10A solutions, up to 10W sustained power and 3V-5V input

• Space Constraints and PCB routing challenges

• PDN Challenges – Platform Level Validation
 • Co-design and optimization of power delivery
 • Co-design and droop mitigation for CPU/GPU power domains

• PDN Challenges – Droop Mitigation
 • 1-10ns load transient challenge
 • 100ns load transient challenge
Conventional DC-DC solutions with <5MHz switching frequencies require large inductors and array of low-ESL capacitors.

PCB routing losses need to be included in the overall efficiency calculations.

Fully integrated, POL modules or in-package integration needed to address these challenges.

Regulation Accuracy specified at bulk Cap.
PDN Challenges – Platform Level Validation

• PMIC evaluation performed with oversized components on “ideal” PCB. Final product validation performed without components.
• Regulation accuracy needs to be specified at the CPU power mesh
• Fully integrated module validation includes all components and critical routing

March 20, 2019 APEC 2019, Endura Technologies, Dosluoglu et. al.
PDN Challenges – Droop Mitigation

• L*di/dt voltage drop across the parasitic inductance
 • Current solutions rely on low-ESL capacitor array for fast load transients which is limited by the number of capacitors that can be placed in parallel next to SoC

• R * I voltage drop across the parasitic resistance
 • Remote sense technique is useful only for partial compensation of IR drop and only if fast load transients supported. It does not help in worst case of 0->Imax transition.

• On-chip design solutions required to address PDN challenges
 • 1ns-10ns load transients best handled by on-chip droop mitigation solutions
 • Droop mitigation solution such as Endura eTC™ can be extended up to 50ns
 • Voltage regulation need to seamlessly overlap the response of droop mitigation
Technical Approach

- **Active Transient Control – Integrated within CPU/GPU**
 - Gen2 eTC 10nm FF [presented at ISSCC 2017]
 - Gen3 10nm FF integrated into product
 - Gen4 eTC 12nm/7nm [to be published]

- **SiP solutions - Embedded Voltage Regulator (eVR)**
 - [presented at 3D-PEIM, 2018]

- **Ultra-Compact module solutions – Fully integrated modules**
 - Mobile Platforms (Area=18mm², Thickness= 0.9mm)
 - Server/Industrial Platforms (Area=25mm², Thickness=1.2mm)
Power Module Package Solution

- Package information
 - ET262x Size: 6.0x4.3x1.15; 0.4mm pitch Micro-BGA
 - ET261x Size: 4.8x3.7x0.85; 0.4mm pitch Micro-BGA
 - Assembly: one flip chip die and 12 passives using chip shooter

- Summary of Packaging Solution Requirements
 - Thin substrate (0.16mm coreless) vs thicker mold cap (0.63mm and 0.93mm for ET261x and ET262x)
 - High density SMT component population on thin substrate:
 - Micro-BGA ball attachment (0.15mm BGA ball): 60um height
Ultra-Compact Power Module Solutions

- Fully integrated compact module with less than 0.9mm height
 - Provides easy adoption and faster TTM without SoC package re-design
 - Significant PCB area reduction with integrated inductors and capacitors
 - PCB routing minimized with significant reduction of losses

VR module can also reside on the top of PCB
SiP integration in SoC Package

- 130MHz, 6A, 3-phase 1.8V input voltage DC-DC implemented in 1mm³
- Programmable internal clock from 13MHz – 130MHz
- Inductor and capacitor determined based on transient response and total regulation accuracy including ripple at power mesh
Measurements: SiP and Power Module

- Measurement configurations and evaluation board
- 130MHz SiP Solution Advantages
 - Fast start-up
 - Fast Dynamic Voltage Control (DVC)
 - Fast load transient
 - Switching frequency vs Inductor values
- Extending the solution to Power module with Li Ion battery input
 - Efficiency: SiP solution and Power Module
 - Thermal performance: 10A, 10W, 10MHz Power Module
 - Benefits of Load Line regulation
Evaluation Board and Configurations

Fully Integrated Power Module for distributed power on PCB

- Vin: 3.0V – 5.5V, Fsw: 10MHz
- Imax: 10A, Max. Power: 10W

SiP prototype suitable for PoP integration

- (2.5mm x 2.0mm, T<0.2mm)
- Vin: 1.6V to 2.0V
- Fsw: 13MHz to 130MHz
- Imax: 6A
Fast Start-Up

- Dormant to regulation in 200ns
- Ability to provide regulation for the entire load range at 200ns
Fast Dynamic Voltage Control (DVC)

- Fast DVC: 400mV / 120ns
- Suitable for High Definition Dynamic Voltage and Frequency Scaling (DVFS) control of SoC power domains
Fast Load Transient

- Load Transient:
 - 1.5A \rightarrow 4.5A in 100ns
 - 4.5A \rightarrow 1.5A in 100ns

Zoomed in showing light load to high load transient

March 20, 2019 APEC 2019, Endura Technologies, Dosluoglu et. al.
Optimum switching frequency for maximum efficiency
- SiP solution: $L = 2\text{nH} - 10\text{nH}$
- Power Module: $L = 60\text{nH}$

Switching loss vs RDSon optimized to achieve $>85\%$ efficiency for the entire load range
- SiP solution: I_{max} up to 6A
- Power Module: I_{max} up to 10A
ET7730 Efficiency Measurements

- 3-phase, up to 2A/phase
- Single mode operation for the current load range 20mA to 6A
 - Seamless DCM/PFM to CCM/PWM transition
 - Seamless phase-shedding
- >88% efficiency up to 2.5A (SiP) with 10nH inductors
- 94% efficiency with 0.5mm thick 1.0mm x 0.5mm footprint 60nH inductors (module)
Fully Integrated Module Efficiency

- Single or Dual output configurations with Li Ion battery input (Vin = 3.0V → 5.5V)
 - 4-phase 10A
 - 2x2-phase 2x5A

Multi-phase with integrated input capacitor
- No additional peak current losses at the input
- High current single phase PMIC has additional 3%-4% loss in platform

High input peak current with additional rms losses

March 20, 2019 APEC 2019, Endura Technologies, Dosluoglu et. al.
Thermal Measurements

- 10A, 10W, 10MHz Fully Integrated Power Module
 - Sustained 5W delivery at 40C (20C above ambient)
 - Sustained 10W delivery at 70C (50C above ambient)
Demonstration of Load Line Regulation

- ET2620 load line with 5A load step transient
- Step response with DC regulation optimized to match AC regulation in fully integrated module
Distributed Power Solutions

• System level optimization require compact flexible solutions
 • Fast DVFS require fast switching frequencies and smaller output capacitors
 • Fast switching regulators implemented at point of load may require lower input voltage
 • Fully integrated module solutions allow full control of components and minimize routing of high frequency switching nodes
 • Best optimization achieved by integrating the power delivery solution in the packaged product or power modules with integrated components

• Co-design power solution from battery to CPU/GPU power mesh with SoC Team
 • Active Transient Control – Integrated within CPU/GPU
 • SiP solutions - Embedded Voltage Regulator (eVR)
 • Compact module solutions – Fully integrated modules
Conclusions

• Power Management and SoC Requirements
 • Defining regulation on PCB capacitor is inadequate
 • Need to define Vmin at SoC power mesh at max clock frequency target and worst case load transient
 • Regulation requirements need to be reconsidered based on Vmin (power saving with load line)
 • Power savings of up to 20% can be achieved with granular power and fast dynamic voltage control

• Distributed Power Solutions
 • Embedded Voltage Regulator (eVR) for SiP integration
 • Fast start-up in 200ns for power savings in frequent burst mode operations and power cycling
 • Fast Dynamic Voltage Control for high definition DVFS with ramp rate >3V/µs
 • Fast switching frequency for up to 1A/30ns load transients
 • Fast switching frequency for up to 30mV DVFS set point in 10ns
 • Fully Integrated Compact Power Modules
 • Can be placed very close to power domains without additional routing to/from components
 • Validation and testing include actual inductor and capacitor components
THANK YOU!