2020-2021 Roadmap Presentations

2020-2021 Roadmap Presentations
Content
Sort order
B

Utilizing WBG Devices in Next Generation Power Converters February 20, 2020

Abstract: Wide Bandgap (WBG) devices are getting increasingly popular and finding traction in not only exotic, high-end power converters but also in mainstream applications. While the benefits of WBG devices such as excellent Qg*R(on) figure of merit and lack of reverse recovery are well known, utilizing these benefits and demonstrating high performance power converters has often been difficult. The goal of this presentation is to touch base on the advantages of WBG devices, showcase some example topologies where WBG devices have demonstrated marked improvement in the performance of a power converter. Further, another goal is to dispel some myths around WBG devices (e.g.  they are applicable exclusively in exotic high frequency topologies) and showcase some examples where key attributes of WBG devices can be exploited at traditional frequencies to improve efficiency and thereby power density. 

Presenter: Ajay Hari, ON Semiconductor Ajay Hari is an Applications Director at ON Semiconductor, where he leads a team of product definers, systems, and applications engineers working on of Ac-Dc and isolated Dc-Dc applications. Prior to ON Semiconductor, Ajay worked for National Semiconductor/TI, specializing in isolated power converters and has defined many PWM ICs for telecom, automotive, and industrial markets. Ajay started his career at General Electric as a design engineer. Ajay has a Master’s in electrical and computer engineering from the University of Florida and has authored many technical papers, articles, and holds over 12 patents.

JEDEC JC-70 Issues Industry First Guidelines for Testing and Evaluating Wide Bandgap Power Devices May 14, 2020 

Abstract: As adoption of wide bandgap devices in power electronics is occurring, the industry is focused on creating an ecosystem that will enhance this adoption.  Such an ecosystem  is dependent upon recognizing the current knowledge and maturity of wide bandgap devices, as well as acknowledging the devices may be used in an unique manner compared to how silicon could have been used.   Thus,  modified testing methodologies are required to accurately assess the unique materials. Similarly, validation test results must be reframed to consider how the devices are being used in application.  Methods used for qualification and reliability assessment also must be appropriate for wide bandgap devices and their applications.  JEDEC’s committee for Wide Bandgap Power Electronic Conversion Semiconductors (JC-70) has been addressing these needs and producing guidelines for the industry. The importance of this work is demonstrated by JC-70 being the fastest growing and 3rd largest committee, even though it is the newest JEDEC committee. This webinar will review the new guidelines which have been issued, current focus areas, and how they relate to various applications, such as automotive and industrial.  Join this webinar to learn of this exciting work and how you can become involved.

Presenters:

Stephanie Watts Butler, Ph.D., P.E., is the Technology Innovation Architect in High Voltage Power at Texas Instruments (TI), driving new high voltage and isolation technology innovations from concept to revenue by leading partnerships with TI's technology organizations, manufacturing sites, universities, and product development teams.  Through this role, Dr. Butler also identifies unique product requirements and specifications which enable valuable GaN based systems.  In her career, she has produced innovations in the areas of control, process and package development, R&D management, and new product development. Dr. Butler has authored more than 40 papers and 17 U.S. patents. She is the Chair of JEDEC's JC-70 Wide Bandgap Committee, a Fellow of the AVS, and a Senior Member of IEEE and AIChE.  Dr. Butler is also a member of theIEEE PELS WIE Committee and the Power Electronics Magazine Advisory Board.  SWE honored Dr. Butler with their highest award, the Achievement Award for Outstanding Technical Contributions, and Business Insider named Dr. Butler to their most powerful female engineers list of 2017. Dr. Butler also serves on the TxGCP Champion Board and UT Austin Department of Chemical Engineering Advisory Council.

Dr. Peter Friedrichs was born in 1968 in Aschersleben, Germany. After achieving his Dipl.-Ing. in microelectronics from the Technical University of Bratislava in 1993, he started a Ph.D work at the Fraunhofer Institut FhG-IIS-B in  Erlangen. His focus area of expertise was the physics of the MOS interface in SiC power MOSFETs.  In 1996 he joined the Corporate Research of the Siemens AG and was involved in the development of power switching devices on SiC, mainly power MOSFETs and vertical junction FETs.

Peter Friedrichs joined SiCED GmbH & Co. KG, a company being a joint venture of Siemens and Infineon and originated from the former Siemens research group, on March the 1st, 2000. Since July 2004 he was the managing director of SiCED, responsible for all technical issues. In 2009 he achieved the Dipl.-Wirt.-Ing. From the University of Hagen. After the integration of SiCED’s activities into Infineon he joined Infineon as Senior Director Silicon Carbide from April 1st, 2011. He is a member of the ECPE board and acts as co-chair for the JEDEC JC70.2 committee. He holds numerous patents in the field of SiC power devices and technology and is an author or co/author of more than 50 scientific papers and conference contributions.

Powering & Retrofitting IoT Devices for Industry 4.0 May 28, 2020

Abstract: Wireless sensors can be easily and cost effectively retrofitted in and around equipment and infrastructure in factories to capture sensory data. This is of particular interest to adopters of industry 4.0 where the vision is to have machines which are augmented with sensors, connected to a system that can visualise the entire production line and ultimately make decisions on its own or at least help operators make better informed decisions to improve energy and resource utilisation and improve factory agility. This webinar outlines the types of opportunities presented particularly in the areas of asset management and condition monitoring. It also covers the challenge related to reliably powering such devices and the potential for energy harvesting and micro-power management to extend battery life. Real life use cases and solutions developed with be covered in the presentation along with scope for usage for many industry 4.0 related applications. The activities of PSMA’s energy harvesting committee and the EU EnABLES project which give industry and academia free of achage access to leading laboratories and expertise to do ‘power IoT’ experiments are also introduced.

Presenters: 

Mike Hayes is well known internationally as a technology and thought leader in ‘powering the internet of things’. He is head of the ‘ICT for Energy Efficiency’ (ICT4EE) Group at Tyndall National Institute, Ireland developing power management solutions for wireless IoT edge devices. Prior to this he worked for 20 years in the Power Electronics industry at Artesyn Technologies in various technical and senior management design engineering roles.

He is work package leader on several national and EU funded projects in factories of the future, smart grid and energy efficient buildings, most notably as co-ordinator of Tyndall’s family of PMICs (power management ICs), Energy harvesting simulation projects & the EU research infrastructure project EnABLES for ‘powering IoT’. Mike is also currently chair of board of directors at PSMA, co-chair of their Energy harvesting Committee and co-founder of PSMA’s EnerHarv biennial energy harvesting workshop.

Pete Haigh is a Chartered Engineer and Principal Engineer at Tyndall’s ICT4EE group developing integrated power systems for IoT applications. Prior to his 5 years at Tyndall he has over 25 year of industry experience in companies such as Analog Devices, Harris & M/ACom gaining extensive experience in the development and management of a wide range of radio systems. Pete’s current focus areas are Micro Power Energy Harvesting, Ultra Low Power Wireless Sensing systems for IoT and RF Communications. He has been Tyndall’s technical lead on EU funded projects RECO2ST, PVadapt and COMPOSITION, managing and designing complete IoT sensing systems from sensor to cloud for Building Energy Management, micro-grid and Factories of the Future projects.

Advanced Packaging Concepts for Wide Bandgap Power Electronics June 11, 2020

Abstract: This presentation will first focus on the challenges associated with the packaging of Wide Bandgap semiconductors.  The presentation will address, electromagnetic limitations and a 3-D integration concept  for a simple switching cell in both SiC and GaN applications. It will discuss the progression from the switching cell packaging to a full converter, including cooling aspects, and other developments which are currently being addressed in ongoing projects at G2ELab.

Presenter: Dr. Jean-Luc SCHANEN is Professor at Université Grenoble Alpes since 2003. He is leading the power electronics group of G2ELab, composed of 12 permanent academic researchers, and roughly 30 Ph.D students. This group works both in collaboration with academia and industry, in the field of converter design automation, packaging and EMC in Power Electronics.

Accelerated High Voltage GaN Reliability Testing and Advanced Switching Techniques for Improved Ruggedness June 25, 2020

Abstract: Based on extensive validation testing research and execution—this session’s first segment addresses the most effective methods to properly analyze test data. Previous reliability sessions have addressed fundamental modeling, test selection strategies and test execution methods. This session builds on that foundation to define:

  • Conservative modeling strategies
  • Advanced methodologies for Voltage Accelerated Early Life Failure testing (including HTRB)
  • Potential pitfalls to consider when conducting accelerated testing
  • Best practices for choosing test voltages for stress testing
  • Benchmark results for both 650 V and 900 V GaN technologies

The second segment introduces Transphorm’s next generation Gen IV SuperGaNTM that continues the evolution of our two-switch normally-off GaN switch configuration designed to increase performance and overall device ruggedness. Based on learning both internally and from customer product application use, these innovations:

  • Drastically cut internal source inductance to:
    • Extend high power operation
    • Deliver higher performance and flatter efficiency curves by eliminating di/dt current limitations (half-bridge type topologies)
  • Reduce packaging complexity, hence cost
  • Maintain best-in-class robustness and reliability

Competitive analysis will also be presented showing comparisons between this GaN design versus other GaN device technologies and alternative WBG technologies such as SiC.

Presenters: 

Ronald Barr, VP of Quality and Reliability, Transphorm Inc.

Ron leads the quality and reliability validation initiatives for Transphorm’s high voltage GaN power transistors. His team is responsible for defining the company’s quality standards as well performing engineering analysis of product reliability test data. Previously, Ron held similar quality and analytics roles at KLA-Tencor and Nanosys. He has also worked at Read-Rite Corporation, Digital Equipment Corporation, Signetics and Fairchild Semiconductor with responsibilities in front end wafer fab engineering and operations.

Ron holds a BS in Chemistry from Syracuse University along with an MBA in Business from Santa Clara University. He is a certified manager of Quality and Organizational Excellence (ASQ CMQ/OE) and a Certified Six Sigma Black Belt (ASQ CSSBB)

Yifeng Wu, Sr. VP of Engineering, Transphorm Inc.

Yifeng joined Transphorm in 2008, leading the engineering effort in developing GaN power conversion device products and applications. He previously worked at WideGap Technology LLC and Cree Inc. for 11 years.  He received his Ph.D. degree from UC Santa Barbara, where he established himself as a pioneer in GaN Electronics. His contributions span from basic device processes to cutting-edge device designs, from millimeter-wave power amplifiers to sub-kV high-efficiency power converters. He was the first to demonstrate a GaN microwave power HEMT and set several world records for the highest power densities of any solid-state transistor. He holds 112 US patents and has authored many high-impact papers, resulting in more than 15,000 citations in Google Scholar.

Emerging Energy Efficiency Regulations with Emphasis on EU EcoDesign and Energy Labeling Directives July 16, 2020

Abstract: As part of EU energy strategy, targets have been set for energy efficiency for 2020 and 2030 in addition to those for reducing greenhouse gas emissions and transitioning to renewables.   The Ecodesign Directive and Energy Labeling Regulation are two policy instruments used in the EU to drive products toward higher energy efficiency.  Out of fifteen product categories requiring energy labels, five product groups are undergoing labeling reform.  The primary change relates to an aggressive re-scaling of energy efficiency classes, or grades, in order to enable consumers to make better-informed decisions and purchase more efficient products.  For each of these five product groups, including refrigerators, dishwashers, washing machines, electronic displays, and lighting, the presentation will cover upcoming changes as well as definitions and formulae used to determine respective energy efficiency classes.  In the category of electronic displays, furthermore, a deeper analysis will be provided to show how EU standards compare in stringency to those for ENERGY STAR® in the US.

Presenter: Mr. David Chen joined Power Integrations in September 2015 as Director of Applications Engineering.  With twenty-five years of experience in power system design and applications, David has held senior management positions at both publicly traded and privately held companies, including Volterra (acquired by Maxim), Akros Silicon, and Jade Sky Technologies, an LED driver start-up which he co-founded.  David received both his B.S. degree in Electrical Engineering and M.S. degree in Mechanical Engineering from MIT and is the author of two patents.

Ultra-High Density Double-Sided Half-Bridge Packaging with Organic Laminates July 23, 2020

Abstract: A new Epoxy Resin Composite Dielectric (ERCD) laminate has been made available with thicknesses down to 120µm, Rth=10W/mK, VB≥40kV/mm, Tg≥250°C and bondable to prepeg, Al and Cu boards. The thinness provides better thermal performance than DBC alumina with higher reliability. The laminate is ideal for high temperature applications in cost sensitive applications such as automotive and telecom power. This new substrate approach opens new module configurations for heterogeneous integration of power and signal, along with sensing, and supports the recent advances in small-die-size power WBG devices. This webinar takes a comprehensive approach to introducing components, materials, equipment and processes for working with new laminates, and provides a detailed design approach to double-sided power electronics converter modules.

Presenters: Prof. Doug Hopkins, Ph.D. is professor of electrical and computer engineering at North Carolina State University, and directs the Laboratory for Packaging Research in Electronic Energy Systems (PREES). His primary research is in very high frequency, high density power electronic systems, extreme environment electronics, organic-based circuits for power and energy systems, high temperature (>300˚C) composite packaging with integrated ceramics, and true 3D electronic packaging. Professor Hopkins has over 25 years of experience in industry and academia. His early career was at the R&D centers of the General Electric and Carrier Air-Conditioning Companies, and received his Ph.D. from Virginia Tech. Prior to joining NCSU, he was at the University at Buffalo (SUNY Buffalo), and has published over 120 journal and conference articles.

Tzu-Hsuan Cheng received his B.S. from the Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan, in 2012, and the M.S. degree from the Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, in 2014. He is currently pursuing a Ph.D. degree in the Department of Electrical and Computer Engineering, North Carolina State University. He was a Power IC Packaging R&D Engineer in Delta Electronics, Taoyuan, Taiwan, where he was involved in the development of power packaging technologies. His current research interests include packaging process development using organic dielectric material and advanced package design.

GaN-based  Solutions for  Cost Effective Direct and Indirect Time-of-Flight Lidar Transmitters   December 10, 2020 

Abstract: Lidar is a form of remote sensing which compares a transmitted optical signal to its reflection to determine properties of a remote target of interest. Distance-sensing lidar has shown explosive growth in the last decade, and GaN power FETs have been a key enabling factor in this growth. Two significant forms of lidar dominate the lidar industry today: direct time-of-flight (DToF) and indirect time-of-flight (IToF). Typical DToF lidar sends individual pulses, and times the reflection to compute the distance to the target. IToF lidar works by comparing the phase of transmitted and reflected pulse trains. Both depend on short, high current pulses to drive a laser diode transmitter, where pulse currents range from a few amps to hundreds of amps, and pulse widths can be less than 2 ns. GaN FETs make this possible in a cost-effective and compact manner. This webinar discusses both approaches to 3D imaging, where each technology will find its position in the autonomous vehicle of the future, and how GaN enables this future. Recent advances in GaN technology, and especially the advent of lidar GaN ICs, will be shown that improve system performance and significantly reduce system cost. Performance examples are shown, including results of GaN lidar-specific reliability testing. The latter shows that there are no major new failure mechanisms surfaced by the new and extreme operating conditions of lidar transmitters.. 

Presenter: John Glaser, Efficient Power Conversions (EPC) John Glaser, Ph.D., received his BSEE from the University of Illinois in Urbana-Champaign and went to Motorola to design RF power amplifiers for mobile and fleet radio systems, after which he earned an MSEE and Ph.D. from the University of Arizona. He then spent two years at Hughes Missile Systems working on power electronics for TWT amplifiers, after which he joined General Electric Global Research. From 1998 to 2014, he worked on power electronics for consumer, commercial, medical, industrial, aerospace and wide-bandgap semiconductor applications, for power levels ranging from milliwatts to megawatts and frequencies ranging from 50 Hz to > 100 MHz. In 2014, he joined Efficient Power Conversion (EPC) as Director of Applications, where he develops applications, circuits, and methods to maximize the benefit of GaN power transistors, and to help engineers realize the advantages of GaN technology. He has published more than 35 papers and has been granted 33 US patents and 12 non-US patents, with several more pending, and is an IEEE Senior Member.

Microprocessor Power Delivery – Decoupling Capacitor Challenges in the 2020’s   January 21, 2021 

Abstract: In past decades much of the academic work in microprocessor power delivery involved developing an understanding of ground bounce, imperfect power planes, and computational simulation methods.  Models were created of varying complexity to estimate the impact of layout, capacitor selection, placement and mounting inductance to a wide variety of proposed performance metrics.  Like other technical areas, many of the early struggles in Power Delivery Network (PDN) design have dissipated with the development of modern simulation tools and compute power.  Today, for most microprocessor applications designing the PDN has become an execution problem rather than an academic challenge.  Industry knows how to design a PDN, but creating one that meets design cost, manufacturability, and performance in the light of other complex design and supply constraints is the challenge of the 2020’s. 

This presentation will provide a high-level overview of the typical microprocessor PDN design.  It will focus on issues related to modern decoupling capacitors used in PDNs and the challenges they create in the development of tomorrow’s high-volume microprocessors.  Desirable component features that will useful in the next generation PDNs will be discussed.

Presenter: Michael J. Hill is a Principal Engineer at Intel Corporation in Chandler, Arizona.  He has been with the Electrical Core Competency group working on microprocessor power delivery analysis and metrology development since 2002.  His work in this area includes the development of new tools and techniques to allow precise characterization of microprocessor power delivery networks and their components. Much of his work has focused on characterization techniques for microprocessor power delivery systems that utilize integrated voltage regulators.  In addition to his work in Power Delivery, Michael also is responsible for developing characterization methods for other packaging related performance metrics. He has worked on developing ultra-precise material characterization techniques to enable and validate technologies like package-based antenna arrays for 5G wireless applications.   Michael is a member of Tau Beta Pi, Etta Kappa Nu and is also a senior member of the IEEE.  He holds B.S., M.S. and Ph.D. degrees in Electrical Engineering from the University of Arizona.  Michael can be reached by email at: Michael.j.hill@intel.com

Test vs. Analysis – What is the Right Ratio for Achieving High Reliability?   February 18, 2021 

Abstract: Reliability is often a function of the amount of test and analysis applied. But programs are often budget and time constrained. So, what is the right ratio to achieve optimum reliability? Many industries lean on test, eschewing analysis as too expensive. For many programs, reference designs are employed without pessimism and no analysis is performed at all. This presentation discusses where can we focus our efforts to improve the reliability of high-reliability applications. How analysis compliments test and has changed over time, existing and emerging standards, BOL vs EOL tolerance impacts, methods for performing WCCA efficiently on new technologies, how to properly perform and interpret Monte Carlo analysis, and what circuit characteristics often fail stress and WCCA are discussed.

Presenter: Charles Hymowitz, AEi Systems Mr. Hymowitz is a technologist, marketer, and business executive with over 30 years of experience in the electrical engineering services and EDA software markets. Mr. Hymowitz has been Chairman and CEO of AEi Systems, LLC since its re-organization in 2002. He currently guides all aspects of the company’s operations including technical services, product quality, sales and a staff of over 30 in-house and consulting engineers. In 2012, Mr. Hymowitz was recognized as the only independent (not employed directly by a prime aerospace contractor) SME (subject matter expert) on Worst Case Circuit Analysis ("WCCA"). Mr. Hymowitz was a key contributor to Aerospace Corporations’ industry guidelines (“TOR”) for WCCA. Mr. Hymowitz is also the Vice President of Marketing for Picotest, makers of Power Integrity test equipment.

In 1985, Mr. Hymowitz co-founded Intusoft, a leading CAE/EDA software corporation where he was a Director and held several positions, including Chief Operating Officer. He has co-authored several books on SPICE including, “SPICE Circuit Handbook”, “Simulating with SPICE”, “The SPICE Cookbook”, “The SPICE Applications Handbook” and the Intusoft EDA Newsletter. Mr. Hymowitz is a graduate of the Rutgers University, with a BS degree in Electrical Engineering.

Broader Power Markets and Applications Enabled with Silicon Carbide   March 4, 2021  

Abstract: It is widely realized that SiC is now an established technology that is transforming the power industry in many applications across the industrial, energy and automotive segments - from watts to megawatts. Using leading edge technology development to achieve both performance and scale, Wolfspeed is expanding the reach of Silicon Carbide power devices into broader applications where silicon fails to deliver. Silicon carbide is now way past an interesting concept and is being widely adopted in all major market segments and end user systems. Wolfspeed is leading this charge with the industries commanding position both in established product offering and new technology and this webinar will describe and discuss, compare and contrast several power topologies that are commonly used across many applications, and will show how SiC is implemented and the advancements over incumbent silicon it brings.

Presenter: Guy Moxey, Wolfspeed Guy Moxey has spent his entire career in the power semiconductor industry with various roles in applications, product marketing and product line management. His career has included employment at International Rectifier, Siliconix and Fairchild Semiconductor. Mr Moxey currently serves as the Senior Director of Power Marketing and Applications for Wolfspeed. He has authored numerous technical papers and application notes and received his B.Eng (Hons) in electrical/electronic engineering from the University of Brighton and his MSc in power electronics from the University of Birmingham.

EMI Diagnostics – A Tool for Estimating Capacitor Health   March 18, 2021  

Abstract: Power electronics generate electromagnetic interference (EMI) due to semiconductors’ high-speed switching transitions and naturally occurring parasitic coupling paths.  EMI makes power conversion hardware less reliable and presents compatibility issues for surrounding equipment.  While it is generally a nuisance, EMI also contains useful diagnostic information about the power electronics, its energy sources, and loads.  This is because EMI changes with the age of components.  

This presentation teaches the fundamentals of using conducted EMI as a tool for diagnosing capacitor health.  The talk begins by comparing this method to existing approaches used in literature and applications.  Next, it reviews the precursors for capacitor failure.  Afterwards, it illustrates, via circuit analysis techniques, how certain precursors impact conducted EMI. It further demonstrates the use of digital signal processing (DSP) techniques and machine learning (ML) tools as a means for improving diagnostic capabilities of prognostic and health management (PHM) systems.  The presentation includes experimental results to support the theoretical analysis provided to the audience.

Presenter: Mark Scott, Miami University Mark J. Scott received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from The Ohio State University in 2005, 2013, and 2015, respectively.  Currently, he is an assistant professor at Miami University in Oxford, Ohio, USA. His previous work experience includes developing and installing industrial automation systems and validating power electronics for automotive applications.    Dr. Scott researches the design trade-offs of using silicon carbide (SiC) and gallium nitride (GaN) power devices in electrified transportation and renewable energy. This includes developing resonant power conversion topologies as well as measuring and mitigating conducted electromagnetic interference (EMI). He also explores prognostic and health management techniques for power conversion hardware. Dr. Scott has multiple publications in IEEE journals and has presented at several conferences and workshops.   He is also actively involved with service to IEEE and PSMA.

How Data Science and Artificial Intelligence Can Help Power Electronics and Power Semiconductor Technologies   April 1, 2021  

Abstract: Rise of the Artificial Intelligence and Machine Learning algorithms, tools, and platforms, and their coupling with the availability of large-scale data acquisition and processing systems is transforming the enterprise of science and technology all over the world. This is precursor to paradigm-shifting changes on how power electronics systems and associated components will be designed for, and utilized in various applications. Every major industry is adopting AI techniques for improving their technologies, products and services. Unfortunately, clear and unambiguous discussions on how power device and electronics industry is planning to take advantage of these transformative tools and frameworks in its roadmap of developing more efficient and reliable technologies are somewhat lacking. In this talk, the speaker would like to show some possibilities and provide some pointers on these topics. The goal is not as much emphasizing a specific application of AI in power electronics so as to stimulating ideas and start the conversation.

Presenter: Tirthajyoti Sarkar, Adapdix Dr. Tirthajyoti Sarkar works as a Data Science Engineering Manager at Adapdix Corp. where he leads the development of Artificial intelligence and Machine learning modeling and data analytics for Industrial IoT systems on an edge-computing platform. Application areas include photonic assembly, semiconductor manufacturing, automotive factories, etc. Before this, Tirthajyoti spent 12 years in the power semiconductor industry. He was a Sr. Principal Engineer at ON Semiconductor, where he developed advanced semiconductor technology and products that powered everything from smartphones and data centers to electric cars.

He has published data science books, and regularly contributes highly cited AI/ML-related articles on top platforms. Tirthajyoti has also developed multiple open-source software packages in the field of statistical modeling and data analytics. He has 5 US patents and ~30 technical publications in IEEE journals/conferences. He also contributes to community activities in IEEE and PSMA including being the co-chair of the PSMA Semiconductor committee. Tirthajyoti holds a Ph.D. from the University of Illinois and a B.Tech degree from the Indian Institute of Technology, Kharagpur

Traditional and Machine-Learning based Magnetic Core Loss Modeling   April 15, 2021  

Abstract: Magnetic core loss modeling is a long-standing and important challenge for high-performance power electronics design.

This talk will provide an overview of the key principles and recent advances including equation-based and data-driven machine learning methods. Strengths and limitations of many traditional and recently developed core-loss modeling methods will be reviewed and discussed. Results of a new machine-learning based core loss modeling platform - MagNet - will be shown to illustrate the potential of both data-driven and equation based approaches.
 
Presenters: Minjie Chen, Princeton; Charles Sullivan Dartmouth
Charles R. Sullivan is Professor of Engineering at Thayer School of Engineering at Dartmouth where he is also Director of the NSF Power Management Integration Center. He received a B.S. degree in from Princeton University in 1987 and a Ph.D. from the University of California, Berkeley in 1996. He has published over 200 technical papers and holds 42 US patents.  His research expertise includes modeling and optimization of electromagnetic components for high-frequency power conversion; thin-film magnetic materials and devices; and wireless power transfer.  He is a Fellow of the IEEE the recipient of the 2018 IEEE Power Electronics Society Modeling and Control Technical Achievement Award..
 
Minjie Chen is an Assistant Professor of Electrical Engineering and Andlinger Center for Energy and the Environment at Princeton University, and the director of the Princeton Power Electronics Research Lab. He received his Ph.D degree from MIT in 2015, and his B.S degree from Tsinghua University in 2009, both in electrical engineering. His research interests include high frequency power electronics, advanced power electronics architectures, power magnetics, and the design of high-performance power electronics for emerging and important applications. He is a recipient of the NSF CAREER Award, two IEEE Transactions Prize Paper Awards, an outstanding Ph.D. thesis award from MIT, and many other awards from the IEEE Power Electronics Society. He has published over 30 papers in journals and conferences and holds 5 issued patents. He is an Associate Editor of the IEEE Transactions on Power Electronics and IEEE Journal of Emerging and Selected Topics in Power Electronics. 

Fundamentals and Application-Oriented Evaluation of Solid-State Transformer Concepts   April 29, 2021 

Abstract: Solid-State Transformers (SSTs) provide isolation and power flow control between medium-voltage and low-voltage AC or DC systems, and are formed by input- and output-side power electronic converters, which are linked through a medium-frequency transformer. Accordingly, SSTs show high power density and are offering full controllability of the terminal currents and/or the transferred power and, in case of AC voltages, the reactive power at the input and the output side.  Therefore, SSTs are well suited for replacing bulky low-frequency (LF) transformers of high-power EV charging stations, datacenters, traction vehicles etc. and are in general seen as key elements of future smart microgrids. However, the connection to MV, the high overall complexity, the relatively high realization costs, and the potentially lower efficiency in case of AC/AC conversion are still major challenges for practical applications.

The webinar starts with a brief review of transformer scaling laws and then identifies the motivation, requirements, and challenges associated with SST applications. Next, we discuss the most important conceptual and design aspects of SSTs such as single-cell vs. multi-cell topologies using Si or SiC semiconductors, isolated front-end vs. isolated back-end converter architectures, reliability of multi-cell converters, protection, and medium-frequency transformer realization. In this context, we also present latest results of research at ETH Zurich, which currently targets advanced air-core medium-frequency transformer designs considering close similarities to inductive power transfer systems. Finally, the most promising mid-term application scenarios for SSTs, e.g., ultra-fast EV charging, modular power supply systems of datacenters, collector grids of utility-scale PV plants or wind farms, and AC and DC microgrids in smart cities, are identified and briefly described. Furthermore, we outline future research areas before we conclude with a critical evaluation of the SST concept against LF-transformer-based solutions.

Presenters: Prof. Johann Kolar & Dr. Jonas Huber, ETH Zurich 

Johann W. Kolar is a Fellow of the IEEE and is currently a Full Professor and the Head of the Power Electronic Systems Laboratory at the Swiss Federal Institute of Technology (ETH) Zurich. He has proposed numerous novel converter concepts incl. the Vienna Rectifier, the Sparse Matrix Converter and the Swiss Rectifier, has spearheaded the development of x-million rpm motors, and has pioneered fully automated multi-objective power electronics design procedures. He has supervised 75+ Ph.D. students, has published 900+ journal and conference papers and 4 book chapters, and has filed 200+ patents. He has served as IEEE PELS Distinguished Lecturer from 2012 – 2016. He has received 36 IEEE Transactions and Conference Prize Paper Awards, the 2014 IEEE Power Electronics Society R. David Middlebrook Achievement Award, the 2016 IEEE PEMC Council Award, the 2016 IEEE William E. Newell Power Electronics Award, and two ETH Zurich Golden Owl Awards for excellence in teaching. He was elected to the US National Academy of Engineering as an international member in 2021.  The focus of his current research is on ultra-compact/efficient WBG converter systems, ANN-based design procedures, Solid-State Transformers, ultra-high speed drives, and bearingless motors. 

Jonas E. Huber received the MSc and the PhD degree from the Swiss Federal Institute of Technology (ETH) Zurich, Switzerland, in 2012 and 2016, respectively. Since 2012, he has been with the Power Electronic Systems Laboratory, ETH Zurich and became a Postdoctoral Researcher, focusing his research interests on the field of solid-state transformers. From 2017, he was with ABB Switzerland Ltd. as an R&D Engineer designing high-power DC-DC converter systems for traction applications, and later with a Swiss utility company as a Business Development Manager. He then returned to the Power Electronic Systems Laboratory as a Senior Researcher in 2020, extending his research scope to all types of WBG-semiconductor-based ultra-compact, ultra-efficient or highly dynamic converter systems. 

Coordination of Operation of a Future Power Network with Increase in Inverter Based Resources September 9, 2021 

Abstract: The changing resource mix of the bulk power system, particularly the increasing deployment of wind power and solar PV, has resulted in an increasing portion of the resource mix being asynchronously connected through inverters - Inverter Based Resources (IBRs). These resources behave differently than traditional synchronous resources, which has necessitated investigation into viable alternate control schemes for use during operation of the system. A major theme of alternate schemes proposed in research has been on ensuring that these IBRs conform to the operational norms and limits that are presently followed. However, as a faster response can be obtained from IBRs, this talk will explore the capabilities to exploit fast response characteristics of an IBR to obtain superior frequency control. The   talk will also  look towards providing performance specifications that can be expected from power electronic resources in a future power system.

Presenter: Deepak Ramasubramanian is a Technical Leader at the Electric Power Research Institute (EPRI) in the Grid Operations and Planning Group. He joined EPRI in 2017 where his work is in the area of modeling, control and stability analysis of the bulk power system with focus on the associated impacts of large-scale integration of converter interfaced generation. He received his Ph.D. degree in Electrical Engineering from the Arizona State University, Tempe, USA in 2017 and his M.Tech. degree in Power Systems from the Indian Institute of Technology Delhi, New Delhi, India in 2013. He is a recipient of an Energy Systems Integration Group (ESIG) Excellence Award.

Energy Harvesting for Low-Power IoT Applications in Low-Speed Rotating Machinery October 7, 2021 

Abstract: IoT applications and the integration of smart sensors become more and more common in industrial applications. In many cases condition monitoring and predictive/preventive maintenance are the core drivers. Rotating machineries, which are commonplace in indus-trial applications, are no exception. With moving parts, however, the wiring of these components can become a challenge, raising a demand for wireless communication and power supply alternatives.

This webinar will focus on energy harvesting as a power supply alternative for low-power IoT applications in rotational scenarios. It will cover some background on energy harvesting and a motivation for rotational energy harvesting in industrial applications. The webinar will then provide an overview of energy harvesting techniques in rotational applications, before deep-diving into an example of a variable reluctance energy harvester for low-speed rotating machinery.

Presenter: Sebastian Bader, STC Research Centre, Mid Sweden University Dr. Sebastian Bader is an associate professor of embedded systems at the Department of Electronics Design at Mid Sweden University, and a senior researcher at the STC Research Centre. He received his PhD degree in 2013 with a focus on energy-efficient and self-powered networked embedded systems. His research focus currently lies on energy harvesting technologies and systems, with a focus on kinetic energy harvesting and photovoltaics for low-power sensor systems. Dr. Bader has been a visiting researcher in Australia and the UK, is a senior member of the IEEE and a member of the PSMA energy harvesting committee, as well as an associate editor for the journal on sustainable computing: informatics and systems.

SiC: Beyond Power Devices October 21, 2021  

Abstract: When the world eventually emerges from this global pandemic and supply chains re-normalize, there is optimism that the semiconductor shortages will subside. Among these improvements will be the ability to deliver silicon carbide (SiC) semiconductor power devices more rapidly and at lower price points. However, as has been well-documented, there are advancements beyond the power devices themselves that play a role in the adoption of SiC technology in new design starts. This talk will touch on some of those. Economy and performance are benefits that come with high power density power electronics, analogous to VLSI electronics. High density power electronics require the heterogeneous integration of disparate technologies including power semiconductor devices, driver, protection and control circuitry, passives and voltage isolation techniques into single modules. One of the keys to advancing power electronics integration has been the commercial reality of wide bandgap power semiconductor devices made from silicon carbide and gallium nitride. The ability to design and manufacture wide bandgap integrated circuits as sensors, drivers, controllers, and protection circuitry allows them to be packaged in close proximity to the power device die to minimize parasitics that would adversely impact system performance. These impacts include excessive ringing, noise generation, power loss, and, potentially, self-destruction. This talk will describe emerging trends in SiC-based integration. Advanced 3D electronic module packaging approaches driven by simultaneous electro-thermal-control design methods and multi-objective optimization techniques will also be described.

Presenter: Prof. Alan Mantooth, University of Arkansas H. Alan Mantooth received the B.S.E.E. and M.S.E.E. degrees from the University of Arkansas in 1985 and 1986, and the Ph.D. degree from Georgia Tech in 1990. He then joined Analogy, a startup company in Oregon, where he focused on semiconductor device modeling and the research and development of modeling tools and techniques. In 1998, he joined the faculty of the Department of Electrical Engineering at the University of Arkansas, Fayetteville, where he currently holds the rank of Distinguished Professor. His research interests now include analog and mixed-signal IC design & CAD, semiconductor device modeling, power electronics, power electronics packaging, and cybersecurity. Dr. Mantooth helped establish the National Center for Reliable Electric Power Transmission (NCREPT) at the UA in 2005. Professor Mantooth serves as the Executive Director for NCREPT as well as two of its centers of excellence: the NSF Industry/University Cooperative Research Center on GRid-connected Advanced Power Electronic Systems (GRAPES) and the Cybersecurity Center on Secure, Evolvable Energy Delivery Systems (SEEDS) funded by the U.S. Department of Energy. In 2015, he also helped to establish the UA’s first NSF Engineering Research Center entitled Power Optimization for Electro-Thermal Systems (POETS) that focuses on high power density systems for electrified transportation applications. Dr. Mantooth has co-founded three companies in design automation (Lynguent), IC design (Ozark Integrated Circuits), and cybersecurity (Bastazo) as well as advising a fourth in power electronics packaging (Arkansas Power Electronics International) to maturity and acquisition as a board member. Dr. Mantooth holds the 21st Century Research Leadership Chair in Engineering. He currently serves as Senior Past-President for the IEEE Power Electronics Society and Editor-in-Chief of the IEEE Open Journal of Power Electronics. Dr. Mantooth is a Fellow of IEEE, a member of Tau Beta Pi and Eta Kappa Nu, and registered professional engineer in Arkansas. 

Physics-based Modeling Approaches for Magnetic Material and Components November 4, 2021 

Abstract: Magnetics design has become a critical issue for power electronics because of increasing trends towards high efficiency and high power-density. Rapid progress in wide-bandgap semiconductors has revolutionized active devices in power converters, leaving the indispensable passive magnetic components as the bottleneck against further system-level miniaturization and performance improvements. However, conventional design and modeling of magnetic components largely reply on behavioral-level regression methodologies that are inadequate to provide theoretical guidance and feasibility for advanced applications. This talk starts from the external characteristics of magnetic components, and then shifts from macroscopic performance to microscopic behavior for magnetic materials in order to reveal the hierarchy of interactions between material properties and component applications. Preliminary modeling works derived from the Landau-Lifshitz-Gilbert (LLG) equation governing the microscopic physics of magnetic materials will be presented. The modeling techniques are validated initially with thin-film magnetic filters used for RF applications, which will be extended to power magnetic components. The model not only provide powerful tools for analyzing magnetic-related issues in the next generation of high-frequency and high-density power electronics with improved accuracy and generality; but also bridges the gap between magnetic material development and their performance in practical applications.

Presenter: Dr. Helen Cui, University of Tennessee Helen Cui received the B.S. degree in electrical engineering from Tianjin University, Tianjin, China, in 2011, and the M.S. and Ph.D. degrees from Virginia Tech, Blacksburg, in 2013 and 2017, respectively, both in electrical engineering. She is currently an assistant professor at the University of Tennessee since 2020. Before joining UT, she was a postdoctoral scholar in the Department of Electrical and Computer Engineering at UCLA working on RF magnetics. Her research interests include magnetic components for high-density and high-frequency applications; magnetic material modeling in power electronics with wide-bandgap devices.

Next-Generation GaN Integration: Autonomy, Efficiency, Reliability November 18, 2021

Abstract: Since production launch in Q1 2018, high-voltage gallium nitride (GaN) power ICs have moved into mainstream power applications. High-frequency, high-power-density system optimization poses new questions and presents new opportunities for GaN power IC designers to extend system performance advantages over GaN discretes, and legacy silicon.

Next-generation integration enables even higher efficiency, autonomy and reliability with precision sensing of system current, voltage and temperature and real-time control and protection. External monitoring components - such as large, lossy sense resistors – are eliminated, reducing system power loss, reducing complexity and reducing cost. Autonomous characteristics include current sense and protection, low-power standby, etc.

The presentation will present worked-examples covering mobile fast chargers in the range 30-300W, and including PFC options and ACF/QR examples. 

Presenter: Dan Kinzer, COO / CTO, Navitas Semiconductor For 30 years Dan has led R&D at semiconductor and power electronics companies at the VP level or higher. His experience includes developing advanced power device and IC platforms, wide bandgap GaN and SiC device design, IC and power device fabrication processes, advanced IC design, semiconductor package development and assembly processes, and design of electronic systems. Before Co-founding Navitas, Dan served as VP R&D, VP Advanced Product Development, and Chief Technologist at International Rectifier, and SVP Product & Technology Development & CTO at Fairchild Semiconductor. In 2018, Dan was an inaugural inductee to the International Symposium on Power Semiconductor Devices and ICs (ISPSD) Hall of Fame. Dan holds over 180 US patents, and a BSE degree in Engineering Physics from Princeton University.

Latest Trends in Vehicle Electrification from Semiconductor Perspective December 9, 2021

Abstract: As representatives of governments, businesses, and other organizations with an influence over the future of the automotive industry and road transport, we commit to rapidly accelerating the transition to zero emission vehicles to achieve the goals of the Paris Agreement. Together, we will work towards all sales of new cars and vans being zero emission globally by 2040, and by no later than 2035 in leading markets. During the COP26 in Glasgow major automotive players and governments agreed on moving forward to the next steps of electrification in order to reduce climate change. The vehicle electrification is becoming real and it is changing the automotive industry and its tiers, including semiconductors. During this presentation an overview on Vehicle Electrification from the Power Electronics and Semiconductor perspective will be provided. Furthermore challenges and trends in power semiconductors will be discussed. 

Presenter: Vittorio Crisafulli, onsemi Dr. Vittorio Claudio Crisafulli is a Product Line Manager at onsemi, where he is responsible for the Automotive WBG product line. He has more than 15 years’ experience working in the semiconductor sector and has held several positions, ranging from R&D to Application,  to Marketing. Vittorio has been a part of the power electronics industry since 2006 and has worked for companies including STMicroelectronics, Whirlpool, Power Integration, Semisouth and onsemi. Vittorio’s educational background includes a Master Degree in Electronic Engineering from University of Catania, a Ph.D. in Energy from the Scuola Superiore at the University of Catania, and a Masters in Business and Administration (GEMBA) from the SDA Bocconi. Vittorio also has a visiting Ph.D. at the department of Energy of Aalborg University. Vittorio holds four patents, and has authored or co-authored more than 20 international technical publications.

Trends in Battery Energy Storage December 16, 2021

Abstract: This webinar for the PSMA Power Technology Roadmap series will describe emerging trends in battery energy storage, covering a broad range of energy levels and applications. This will include some information based on recent energy storage contributions to a PSMA white paper - Energy Harvesting for a Green Internet of Things and the Nanoelectronics Roadmap for Europe developed in the NEREID EU project for energy requirements in future integrated systems utilising energy harvesting and storage. 

The materials utilised in batteries for portable electronics have been scaled to EV battery packs to reduce carbon emissions in the transport sector. As battery research and development is a major focus of the European Green Deal which targets a climate neutral society by 2050 the webinar will also describe recent initiatives in Europe to assist with the development of the battery ecosystem that support but also go beyond the requirements of the electronics industry. Trends in the development of next generation lithium-ion batteries will be discussed including alternative cathodes and silicon based anodes, through to solid-state electrolytes for lithium-ion, lithium metal and beyond lithium-ion possibilities. 

Presenter: James Rohan, Tyndall National Institute Dr James Rohan established and leads the Electrochemical Materials and Energy research group at Tyndall National Institute in University College Cork, Ireland. Prior to that he was a senior scientist at EIC Laboratories in the US working on lithium ion batteries for EVs after his Ph.D. at Southampton University in the UK where he used microelectrodes for analysis of lithium metal electrochemistry. He is chair of the Energy for the IoT research cluster in Tyndall. He has contributed to road-mapping energy harvesting and storage solutions for the IoT including the most recent IEEE International Roadmap for Devices and Systems https://irds.ieee.org/ He is a funded investigator in the Connect Science Foundation Ireland Research Centre for future networks and communications and lecturer in the UCC School of Chemistry. 

He has participated in a number of EU research programmes developing battery materials including the ongoing copper redox flow battery project Cuber (www.cuberproject.com) and the Enables infrastructures project (www.enables-project.eu) offering nanoscale materials processing for energy applications and smart devices. He is a member of the Electrochemical Society and the International Society of Electrochemistry for which he is the Ireland regional representative.