Magnetics for Solid State Transformer

Solid State Transformer (SST)

Motivation:

- Classical 60/50Hz transformers are bulky
- Minimal features : voltage stepping and galvanic isolation
- Additional features and size reduction with high frequency switching transformer

Three stage SST

Features:

- Active/Reactive power control at HV and LV both grids
- Integration of both AC and DC renewable energy sources
- High frequency isolation
- Intelligent fault management

Magnetics for SST

HF switching transformer is the one of the key elements enabling SST

Magnetics for SST

Magnetic materials

Material	Composition	Loss(w/kg) (0kHz,0.2T)	Saturation B _{max} [mT]	Permeability (50Hz)	Max working Tem[°C]
Grain oriented silicon steel	Fe ₉₇ Si ₃	>1000	2000	2k-35k	120
Fe-amorphous alloy	Fe ₇₆ (Si.B) ₂₄	18	1560	6.5K-8K	150
High performance ferrite	MnZn	17	500	1.5K-15K	100/120
Nanocrystalline alloys	FeCuNbSiB	4.0	1230	20K-200K	120/180

• Critical parameters are high saturation flux density and low losses

High Voltage Switching Transformer

• Specifications

Parameter	Values		
Power	35 kVA,11 kV/22 kV dual mode		
Drimory	9.6 kV RMS, 16.6 kV peak,8 A RMS,		
Finnary	12A peak		
Secondary V winding 1 2	360 V RMS, 605 V peak, 52 A RMS,		
Secondary – 1 winding 1,2	83 A peak		
Secondary Dalta winding 1 2	625 V RMS, 1050 V peak, 31 A RMS,		
Secondary – Dena winding 1,2	46 A peak		
Frequency	10 kHz		
Leakage inductance	80 µH (from secondary side)		
	280 mH (from primary side), Max.		
Magnetization inductance	magnetizing current 15% of full load		
	current		
Parasitic capacitance	<500 pF		
(inter turn from primary)			
Isolation primary to secondary	100 kV RMS		
Cooling	Oil cooling		
Efficiency	>99%		

• Turns ratio, switching frequency ,leakage inductance are selected for optimum operation of DAB

DAB High Voltage Transformer

- High frequency switching transformer is one of the key elements in SST
- Core material : nanocrystalline
- Filled with oil to achieve the required insulation level and thermal cooling

• Transformer design is very challenging to meet size, minimal parasitics and high leakage and magnetizing inductances

DAB HV Transformer Measured Parameters

- Model parameters identified through impedance measurements
- The primary to secondary coupling capacitances (net 1.2 nF) are critical
- The transformer parasitics affect the system performance: poses control challenges

DAB HV Transformer Tests

Transformer tests

- Hipot test: insulation test
- Voltage transformation test
- Heat run test with secondaries open: core loss
- Heat run test with secondaries shorted: copper loss

Transformer test setup

DAB HV Transformer Tests

Transformer heat run test

- 25kVrms 1min across primary and secondary
- turns ratio: primary to Y is 26.7 and primary to delta is 15
- core loss 50W and copper loss
 80W

DAB Converter Setup

- Modular structure
- HV converter with IGBT Vcesat protection
- Digital controlled ,interfaced through central protection and conditioning card

High Voltage Transformer Switching Test

Resistive load switching

Switching test at 3kV,10kHz

- To verify the switching characteristics of the transformers
- Only HV converter of the DAB used for switching tests
- All three DAB transformers had similar switching performance
- Hard switched, high di/dt at the switching instants

High Voltage Transformer Switching Test

Lagging load switching

Switching test at 3kV,10kHz

- The lagging load results in ZVS switching of the HV 3level converters
- Reduced di/dt

Voltage and current of a 3-level pole with lagging load (R=6 Ω and L= 74 μ H)

DAB Measurement Results

DAB operation at 3 kV primary side DC link with 5 kW load

- Near sinusoidal current in DAB due to 3-level 3-phase topology and control advantages
- LC ringing in both primary and secondary currents due to transformer parasitic capacitors

SST Integrated Test

Output inverter line voltage and current

SST Integrated test

DAB waveforms of integrated SST

DAB primary voltage: Ch1- 1 kV/div, DAB secondary voltage: Ch2- 100 V/div Inverter current: Ch3- 10 A/div, Inverter voltage: Ch4- 50 V/div)