

Thermal vs. Power Loss Efficiency Considerations for Powder Core Materials

Christopher Oliver Nien Teng Micrometals, Incorporated

- Powder Cores Description
- What properties change with temperature
- Measurement Technique
 - Sample Preparation
 - Measurement Process
- Permeability vs. Temperature
- Core Loss vs. Temperature
 - Hysteresis Loss / Eddy Current Loss Model
 - Measure / Model Each Seperately
- Bsat vs. Temperature
 - Greatest impact near Curie Temperature
 - Negligible impact due to high Curie Temperatures.
- Core Loss Thermal Aging

What is a Powder Core?

Powder Core Characteristics

- Distributed Air gap
- Discrete gap not required minimal Fringing
- Eddy Currents restricted to flowing within particles
- "Soft" Saturation
- Flexible Material Choices
 - Bsat
 - Losses
- Permeability controlled by Insulation Level

What Properties Change with Temperature?

- Reversible Changes
 - Permeability
 - Dependent on Alloy System
 - Both Quasi-Linear and Non-linear performance
 - Core Loss
 - Effects on Hysteresis Loss
 - Effects on Eddy Current Loss
 - Bsat
 - Critical consideration of Ferrite Materials Low Tc
 - Minor impact on Powder Core Materials High Tc
- Irreversible Changes
 - Core Loss Thermal Aging
 - Does not impact most Alloy Cores
 - Well characterized for Iron Powder Cores

Sample Preparation: Wound and Drilled Sample

Sample Preparation: Taped Sample

Sample Preparation: Insulating Layer

Sample Preparation: Ready for Testing

Sample Preparation: Pre-heat / Pre-chill Sample

Sample Preparation: Record Measurements

Permeability vs. Temperature: Testing

- Meter: Standard LCR meter
- Winding
 - Cover core uniformly Minimize leakage
 - Single Winding
 - Minimize effect of Rdc and Rac
- Frequency: In linear region for material (Q>20)
- Drive Level: For Initial Permeability, >1mT (10G)
- As Core heats/cools, Record Inductance, Temperature
- Verification: Meter drift, Slow Cooling Rate
- Convert to Inductance to Permeability
- Plot Permeability vs. Temperature
- Model the Relationship

Permeability vs. Temperature: Typical relationships

Permeability vs. Temperature: Testing

- Part Number: SH-106125-2
 - High Frequency Sendust
 - 125 Permeability
- Winding: 10 turns #20 AWG (0.8 mm)
- Frequency: 1 MHz
- Meter: Agilent 4284A LCR
- Drive Level: 1V open
- Approximate Flux Density: 2 G (0.2 mT)

Permeability vs. Temperature: Measured Values 125 perm High Freq. Sendust

MICROMETALS POWDER CORE SOLUTIONS

Development of Core Loss Model Combining Hysteresis and Eddy Current Loss

OWDER CORE SOLUTIONS

ARNOLD POWDER CORES

TAI S

Measured Data and Fitted Steinmetz Coefficients

ARNOLD POWDER CORES

'AL S

Measured Data and Fitted Hys/Eddy Coefficients

ARNOLD POWDER CORES

ETALS

Core Loss vs. Temperature:

- Meter: Standard LCR, V-A-W meter or other
- Winding: Transformer (likely ignore IR drop, Conductor Loss in calculation), uniform core coverage, minimize self capacitance
- Frequency, Drive Level Suitable for desired Loss component to dominate
 - For Eddy Current, Minimize Conductor and Hysteresis
 - For Hysteresis, Minimize Conductor and Eddy Current
- As Core heats/cools, Record V, A, W, Temperature
- Verification: Meter drift, Slow Cooling Rate
- Plot Core Loss (Hys. or Eddy) vs. Temperature
- Model the Relationship

Core Loss (Eddy Current) vs. Temperature: Testing

- Part Number: SH-106125-2
 - High Frequency Sendust
 - 125 Permeability
- Winding
 - 10 turns #20 AWG (0.8 mm) Frequency: 1 MHz
- Meter: Agilent 4284A LCR
- Drive Level: 1V open
- Approximate Flux Density: 2 G (0.2 mT)
- Calculated Loss Distribution (Room Temp.)
 - Conductor Losses: 1.2%
 - Hysteresis Losses: 1.6%
 - Eddy Current Losses: 97.3%

Q vs. Temperature Measurements . SH-106125-2 – 1 MHz

POWDER CORE SOLUTIONS

ARNOLD POWDER CORES

L/Q vs. Temperature SH-106125-2 – 1 MHz

POWDER CORE SOLUTIONS

MICROMETALS

Eddy Current Coefficient vs. Temperature SH-106125-2 - 1 MHz

MICROMETALS

ARNOLD POWDER CORES

POWDER CORE SOLUTIONS

Eddy Current Coefficient vs. Temperature SH-106125-2 – 1 MHz

ARNOLD POWDER CORES

POWDER CORE SOLUTIONS

Core Loss (Hysteresis Loss) vs. Temperature

- Part Number: SH-106125-2
 - High Frequency Sendust
 - 125 Permeability
- Winding
 - 20 turns #20 AWG (0.8 mm) Primary
 - 20 turns #22 AWG (0.63 mm) Secondary
- Frequency: 5 KHz
- Meter: Agilent Clarke Hess 258 V-A-W meter
- Drive Level: 5 Vrms across secondary
- Approximate Flux Density: 1790 G (0.179 T)
- Calculated Loss Distribution (Room Temp.)
 - Conductor Losses: Ignored No current flows in Secondary
 - Hysteresis Losses: 98.9%
 - Eddy Current Losses: 1.1%

Hysteresis Loss vs. Temperature SH-106125-2 – 5kHz

METALS

ARNOLD POWDER CORES

Hysteresis Loss vs. Temperature SH-106125-2 – 5kHz

POWDER CORE SOLUTIONS

ARNOLD POWDER CORES

Core Loss vs. Temperature Summary

- Part Number: SH-106125-2
- For Temperature going from 25°C to 125°C:
 - Eddy Current Loss decreases by 25%
 - Hysteresis Loss increased by 66%
- To know true effect, one must know the distribution of losses at a given operating point

Thermal Aging:

- What is thermal aging?
 - When Iron Powder is subjected to prolonged exposure to elevated temperatures, an irreversible increase in core loss is experienced
- What influences the rate at which the core loss increases versus time?
 - There are 6 variables that all interact with each other. Changing any one variable will change the rate at which thermal aging occurs
- Most Alloy Powder Cores do not experience Thermal Aging

Thermal Aging:

- 6 variables influencing thermal aging:
 - Core Material
 - Peak AC flux density
 - Frequency
 - Core geometry
 - Copper loss
 - Ambient temperature

Thermal Aging:

