Electronic Components KEN/ET CHARGED®

Tantalum Capacitors

Design and Characteristics

Dielectric Materials

KEMET – Ta / Al Polymer Products

3 billion

Components Shipped per Year*

Construction

where: C = capacitance, Farad

- k = dielectric constant, unitless; for Ta_2O_5 , k = 27
- ϵ_0 = permittivity in vacuum, 8.854 x 10⁻¹² Farad / meter
- A = surface area of conductive plate, meter
- d = dielectric thickness, meter; Ta_2O_5 , thickness is 20 x 10⁻¹⁰ meter per applied formation volt

Construction

Construction

Standard Package

Materials and Processes

Tantalum

.

۲

•

۲

•

Tantalum Pentoxide (Ta₂O₅)

Fractured Anode (Post Formation)

Formation

Dielectric (Ta₂O₅) grows inwardly and outwardly from the original surface of Tantalum particle

Formation

SEM Photos (10,000x) of Anode Surface

50K Powder

150K Powder

Small Neck of Effective **Tantalum**

Dielectric has formed completely through neck

Cathode

Cathode forms the negative connection:

Polymer is an intrinsically conductive polymer.
MnO₂ is manganese dioxide.

Characteristics

Why Use Tantalum?

Military Ta Space Dual-chamber Medical CD device. Automotive Computers Telecom

Ta Oxide Dielectric

SEM of a Sintered Ta Anode

- Stable C (No Temp or Bias Effects), DCL (t) •
- Reliable (Decreasing Failure Rate) •
- Long Life (Exceeds Expected Life of All Hardware)
- Most Volumetrically Efficient (CV/cc, E/cc) •

RC-Ladder Effect

Capacitance vs. Frequency

Polymers are commonly used in applications up to 1MHz. Applications exceeding 1MHz typically call for MLCCs.

Applications Most Suitable For Polymer Capacitors

DC/DC Converter

Filtering, Decoupling, and Hold Up

Reliability Models

KO-CAP capacitors have an average failure rate of 0.5 %/1,000 hours at category voltage, V_c , and category temperature, T_c . These capacitors are qualified using industry test standards at V_c and T_c . The minimum test time (1,000 or 2,000 hours) is dependent on the product series.

The actual life expectancy of KO-CAP capacitors increases when application voltage, V_A , and application temperature, T_A , are lower than V_C and T_C . As a general guideline, when $V_A < 0.9 * V_C$ and $T_A < 85^{\circ}$ C, the life expectancy will typically exceed the useful lifetime of most hardware (> 10 years).

The lifetime of a KO-CAP capacitor at a specific application voltage and temperature can be modeled using the equations on the next slide. A failure is defined as passing enough current to blow a 1-Amp fuse. The calculation is an estimation based on empirical results and is not a guarantee.

Reliability Model

$$A_F = V_{AF} * TAF$$

where: A_F – acceleration factor, unitless

- $T_{\mbox{\scriptsize AF}}$ acceleration factor due to temperature, unitless
- V_{AF} acceleration factor due to voltage, unitless

$$Life_{U_{A,TA}} = Life_{U_{C,TC}} * AF$$

where: Life_{V_A,T_A} – guaranteed life at application voltage and temperature, years Life_{V_C,T_C} – guaranteed life at category voltage and temperature, years A_F – acceleration factor, unitless

Constants (n, E_a) were agreed upon by technical teams based on empirical results. These values can vary based on part type. For the product line, these are accepted values for the purpose of giving guidance.

Reliability Model *Derating*

	-			· · ·		
	L le	E	quivalent Time (<mark>hou</mark>	rs) at Specified Tem	nperature (°C)	
	01	45°C	65°C	85°C	105°C	125°C
	1.00	6,587,826	321,712	22,011	2,000	231
→	0.90	35,551,833	1,736,149	118,785	10,793	1,248
	0.80	234,046,611	11,429,505	781,992	71,054	8,215
	0.67	3,995,262,380	195,105,889	13,348,893	1,212,923	140,238
	0.50	431,739,793,834	21,083,715,712	1,442,520,611	131,072,000	15,154,549

Qualification Plan: 105°C, Vr, 2000 hours.

De-Rating Recommendations

	L le	E	quivalent Time (yea	rs) at Specified Tem	perature (°C)	
	01	45°C	65°C	85°C	105°C	125°C
	1.00	752	37	3	0.2	0.03
\rightarrow	0.90	4,058	198	14	1.2	0.1
	0.80	26,718	1,305	89	8	0.9
	0.67	456,080	22,272	1,524	138	16
	0.50	49,285,365	2,406,817	164,671	14,963	1,730

Strengths And Weaknesses By Dielectric

Dielectric Comparison

MnO₂ vs. Polymer

Application Voltage	MnO2 Voltage Rating	Polymer Voltage Rating
1.0 -1.5	4.0	2.5
3.3	6.3	4.0
5.0	10	6.3
12	25	16
24	50	35
28	50(?)	35 & 50
36	N/A	50
48	N/A	63 & 75
Repla	cing MnO ₂ with Polyme	<u>er</u>
MnO ₂ P Option Op	Poly ot. #1 Smaller	Poly Opt. #2 Smaller Footprint
	Footprint Pootprint OOuF Higher Capacitance	220uF Lower Profile
12V		

16V

100uF

\$

25V

47uF

16V

47uF

Low Profile

\$

100% 90% 80%

> 70% 60%

> 50% 40% 30%

% Rated Voltage

MnO₂ vs. Polymer

- Polymers are much lower in ESR which result in a more efficient circuit.
- Polymer capacitors retain more actual capacitance than MnO₂.

When Polymer Is Not the Ideal Choice

MLCC to Polymer Considerations

Total Capacitance

KO-CAP may be an option, check the other critical parameters.

If you pass all the checks then you are in good shape for KO-CAP

A Common Buck

Support (C8)

Vin	C10 2.2µF	7V 1 C3 2.2μF	Ο 60V C1 2.2μF	C2 2.2µF	R1 442k R2 90.9l	TPS545	C4 0.1µF U1 60-Q1(DDA) BOOT SW VIN GND EN COMP RT/CLK FB	B560C	L1 7.2μH C5 47D0pF	C6 22µF R4 16.9K	С7 22µF С8 47рF	C9 22µF	C11 22µF	5V, 5	A Vout R5 53.6K R6 10.2K
Locatio	on (Ref D	Des)	Origi	nal ML	CC	Description	1	KO-Cap R	Replaceme	nt Desc	ription		Re	esult	
nput ((C1, C2, C3,	, C10)	C1206	6C225K5	RAC	50V X7R 2.2	uF 10%	T598V106	M035ATE12	0 35V H	<o 10uf<="" th=""><th>20%</th><th>La</th><th>yout chan</th><th>ge: 4 to 1</th></o>	20%	La	yout chan	ge: 4 to 1
Suppor	t (C4)		C0402	2C104K4	RAC	16V X7R 0.1	uF 10%	None					DC	Q: Size	
Suppor	t (C5)		C0603	3С472КЗ	GAC	25V COG 4.7	nF 10%	None					DC	Q: Size	

None

T520A226M006ATE100 6.3V KO 22uF 20%

10V COG 47pF 10%

10V X7R 22uF 10%

C0402C470K3GAC

Output(C6, C7, C9, C11) C1206C226K8RAC

DQ: Size

Drop-in replacement

KEMET

CHARGED

KO-CAP has more effective delivered cap @ given conditions

10 MHz

1 MHz

10 nH

1 nH

100 pH

10 pH

100 MHz

Inductance (H)

100 kHz

Frequency (Hz)

Input Side – Does it work as well?

C1206C225K5RAC[4](Capacitance) = 6.945 µF C1206C225K5RAC[4](Inductance) = N/A T598V106M035ATE120(Capacitance) = 10.751 µF T598V106M035ATE120(Inductance) = N/A

10 kHz

1 kHz

100

nf00 Hz

ON

Input Side – What's this going to cost me?

C1206C225K5RACTU			Availa
KEMET	Mouser #:	80-C1206C225K5R	Stock:
CHARGED:	Mfr. #:	C1206C225K5RACTU	On Ord
	Mfr.:	KEMET	Factory
	Customer #:		Enter
	Description:	Multilayer Ceramic Capacitors MLCC -	Linter G
		View Simulation and SPICE Model in K-	Pricir
C Enlarge	Datasheet:	C1206C225K5RACTU Datasheet	
Images are for reference only See Product Specifications	More Information:	Learn more about KEMET C1206C225K5RACTU	
Compare Product		Add To Project Add Notes	

Availability		
Stock:	0	
On Order:	131483 View Delivery Dates	
Factory Lead-Time:	38 Weeks	
Enter Quantity:	Minimum: 1 Multiples: 1	Buy
Pricing (USD)		
Qty.	Unit Price	Ext. Price
1	\$1.04	\$1.04
10	\$0.729	\$7.29
100	\$0.46	\$46.00
500	\$0.415	\$207.50
1,000	\$0.378	\$378.00

Mouser #:	80-T598V106M035E120
Mfr. #:	T598V106M035ATE120
Mfr.:	KEMET
Customer #:	
Description:	Tantalum Capacitors - Polymer SMD 35 10uF 2917 20% ESR=120mOhm AEC- View Simulation and SPICE Model i SIM
Lifecycle:	Wew Product: New from this manufacturer.
Datasheet:	T598V106M035ATE120 Datasheet
More Information:	Learn more about KEMET T598V106M035ATE120
	Mouser #: Mfr. #: Customer #: Description: Lifecycle: Datasheet: More Information:

>>

In Stock: 686		
Stock:	686 Can Ship Immediately	
On Order:	0	
Factory Lead-Time:	23 Weeks	
Enter Quantity:	Minimum: 1 Multiples: 1	Buy
Pricing (USD)		
Qty.	Unit Price	Ext. Price
1	\$3.10	\$3.10
10	\$2.47	\$24.70
100	\$1.78	\$178.00
500	\$1.59	\$795.00
Full Reel (Order in m	ultiples of 1000)	
1,000	\$1.06	\$1,060.00
2,000	\$0.982	\$1,964.00
10,000	\$0.963	\$9,630,00

Capacitor Part Number	No of Caps	Cap/pc (μF) @ 14V	Effective Cap (µF)	ASP/pc (Mouser)	ASP/Total Cap (Mouser)	Difference
C1206C225K5RAC	4	1.75	7	\$1.04	\$4.16	
T598V106M035ATE120	1	10	10	\$3.10	\$3.10	25%

KO-CAP has more effective delivered cap @ given conditions

10 MHz

1 MHz

Inductance (H)

10 pH

100 MHz

100 kHz

Frequency (Hz)

Output Side – Does it work as well?

206C226K8RAC(Inductance) = N/A

1 kHz

100

nf00 Hz

T520A226M006ATE100(Capacitance) = 23.765 µF T520A226M006ATE100(Inductance) = N/A

10 kHz

Output Side – What's this going to cost me?

Availability		
Stock:	0	
On Order:	236998 View Delivery Dates	
Factory Lead-Time:	38 Weeks	
Enter Quantity:	Minimum: 1 Multiples: 1	Buy
Pricing (USD)		
Qty.	Unit Price	Ext. Price
1	\$1.95	\$1.95
10	\$1.46	\$14.60
100	\$0.936	\$93.60
500	\$0.839	\$419.50
1,000	\$0.78	\$780.00
Full Reel (Order in mu	ultiples of 2000)	

KEMET	Mouser #:	80-T520A226M6ATE100
CHARGED!	Mfr. #:	T520A226M006ATE100
	Mfr.:	KEMET
Strat at a	Customer #:	
	Description:	Tantalum Capacitors - Polymer SMD 6. 22uF 1206 20% ESR=100mOhms View Simulation and SPICE Model i SIM
Q Enlarge	Datasheet:	T520A226M006ATE100 Datasheet
Images are for reference only See Product Specifications	More Information:	Learn more about KEMET T520A226M006ATE100
Compare Product		Add To Project Add

In Stock: 14,594	L			
Stock:	14,594 Can Ship Immediately			
On Order:	0			
Factory Lead-Time:	21 Weeks	21 Weeks		
Enter Quantity:	Minimum: 1 Multiples: 1	Buy		
Pricing (USD)				
Qty.	Unit Price	Ext. Price		
1	\$1.07	\$1.07		
10	\$0.71	\$7.10		
100	\$0.443	\$44.30		
500	\$0.40	\$200.00		
1,000	\$0.366	\$366.00		

Capacitor Part Number	No of Caps	Cap/pc (µF) @ 5V	Effective Cap (µF)	ASP/pc (Mouser)	ASP/Total Cap (Mouser)	Difference
C1206C226K8RAC	4	9.825	36.3	\$1.95	\$7.80	
T520A226M006ATE100	4	22	88	\$1.07	\$4.28	45%

Support Capacitors

C4, C5, C8 have no KO-CAP equivalent options. Their cap values are below the range of KO-CAP.

Operating Parameters of Support Caps May Yield Other Options

Other Considerations

- ESR
 - KO-CAP ESR is generally higher than ceramics, but the additional capacitance helps to mitigate the additional ripple.
 - Some series have ESR lower than 10mOhms, contact FAE if close to limit.
- Voltage
 - Derating rules may need to apply to extend life, if necessary.
- Leakage
 - Leakage mostly a major consideration with fixed, non-chargeable direct battery voltage is applied
- Robustness
 - KO-CAP will NOT tolerate reverse bias.
- Supply
 - KO-CAP supply chain is stable and KEMET capacity to be increased by 25%
 - KO-CAP capacity is currently below maximum for most series
 - KO-CAP can offer immediate and sustainable relief
- Design
 - The best value proposition is to replace banks of ceramics with fewer KO-CAPs
 - Drop-in replacements are possible but less likely

Contact a KEMET FAE for further support (www.kemet.com/ask)

Thank You!