
able for further investigation of possible flux migration phenomena.

5 Steinmetz Curve Fits

The Steinmetz4 approximation,

Pv = kfαB̂β , (7)

where Pv is the average power density, f is the excitation frequency, and B̂ is the
peak flux density, is commonly used to characterize core loss data for sinusoidal
excitation, but can also be applied to our square-wave data. We first describe
a formulation in terms of frequency and flux density, but then also provide a
formulation in terms of pulse widths and applied voltage.

To linearize the equation for curve fitting, we used base-10 logarithms (ref-
erenced to 1V or 1 s), because the preferred values for voltage and time used
in the experiment are round decilog values, and because using log10 makes
it convenient to express the standard error in familiar units of decibels (i.e.,
10 log10(P/Pref)). This choice does not affect the values of the k, α, and β
parameters.

In a typical case, Ferroxcube 3C81 material, fitting (7) to the entire set of
square wave data gave a standard error of about 1.5 dB. Visually inspecting
the plots shows a distinct increase in slope around 100 kHz. This inspired a
six-parameter, two-plane curve fit,

Pv = max(k1f
α1B̂β1 + k2f

α2B̂β2) (8)

This fits the data to two intersecting planes that function like a single plane with
a fold in it (Figure 11). It fits the 3C81 data with a standard error of 0.35 dB,
much better than the single equation, and also better than simply using different
parameters for different frequency ranges.

Note that while the formula we are fitting is essentially the same form as
the Steinmetz equation, and we use the variable names k, α, and β, this is a
different model, because is is based on square wave experimental data, and is
intended to predict rectangular pulse core losses. In situations where this might
cause confusion, we will subscript the present parameters5 to distinguish them
from the classic Steinmetz, sinusoidal, parameters.

The boundary between the two planes (the fold) projected onto the log10(f)-
log10(B̂) plane is a straight line,

log10(B̂) = a0 + a1 log10(f) (9)

where

a0 =
log10(k1/k2)

β2 − β1

4Named for C.P. Steinmetz’s work [7], although Steinmetz did not include the frequency
dependence that is now standard [8].

5We choose ‘r’, for “rectangular,” thus avoiding ‘s’ which might suggest either “square” or
“sinusoidal.”
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Figure 11: Two-plane Steinmetz curve fit to Ferroxcube 3C81 material, square
wave loss data.

a1 =
α1 − α2

β2 − β1
.

The parameters a0 and a1 might provide a useful characterization of the tran-
sition of the dominating loss mechanisms from hysteresis to eddy currents, for
comparing different materials. The two-plane Steinmetz parameters from our
experiments are listed in Table 2.

This method of curve fitting has advantages over the common practice of
providing independent Steinmetz parameters for different frequency ranges:

1. There is no step discontinuity at frequency range boundaries.

2. There is no arbitrary choice of boundary frequency. The curve-fitting
optimization chooses the best boundary line (i.e., choosing a0 and a1).

3. The curve fitting optimization uses all the data.

There is no significant computational penalty for using this model, and coding
is easy; programmers can use either (8) directly, or (7), using k1, α1, and β1 for
log10(B̂) > a0 + a1 log10(f), and k2, α2, and β2 otherwise.

The two-plane Steinmetz parameters from our experiments are listed in Ta-
ble 2. The table includes two different sets of k values. The lowercase k1 and
k2 are the values used in (8), implicitly using reference values of 1 T and 1 Hz.
Also listed are uppercase K1 and K2 based on reference values f0 = 100 kHz
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Manufacturer
Material Geom Set k1 K1 α1 β1 γ1 k2 K2 α2 β2 γ2

Ceramic Magnetics Inc
MN60 T cm01 6.085 86810 1.32 2.47 2.15 899.8µ 67879 2.00 2.13 1.13
MN8CX T cm02 63.01 182100 1.19 2.49 2.3 177.4µ 87357 2.20 2.29 1.09

Ferroxcube
3C81 T fx003 11.01 91200 1.31 2.61 2.3 65.32µ 41432 2.18 2.11 0.93
3C81 E fx09 18.02 88800 1.23 2.45 2.22 350.0µ 52769 2.10 2.33 1.23
3C90 T fx010 36.86 39570 1.19 2.94 2.75 2.895µ 18223 2.39 2.16 0.77
3F3 T fx004 102.4 67200 1.13 2.81 2.68 11.93µ 28414 2.30 2.14 0.84
3F3 E fx05 40.63 65950 1.14 2.50 2.36 224.8µ 38221 2.12 2.36 1.24

Magnetics Inc.
F T mi005 26.41 72920 1.24 2.76 2.52 7.612µ 32369 2.37 2.22 0.85
K T mi007 246.2 86830 1.10 2.95 2.85 5.276µ 20750 2.41 2.48 1.07
L T mi08 706.8 150800 1.04 2.87 2.83 276.1m 99927 1.69 2.88 1.19
P T mi003 10.91 43090 1.28 2.80 2.52 75.99µ 36099 2.16 2.13 0.97
R T mi01-6 30.16 67220 1.25 2.90 2.65 14.55µ 30033 2.31 2.24 0.93
W T mi02 832.7m 131000 1.51 2.37 1.86 10.59m 123857 1.82 2.04 1.22

Table 2: Two-plane Steinmetz parameters for various magnetic materials in
two general geometries, toroidal (T) and E-core (E). The ki parameters are
referenced to f = 1Hz and B̂ = 1T; the Ki parameters are referenced to
f = 100 kHz and B̂ = 100mT. All the ki and Ki parameter have dimensions of
W/m3. The α and β parameters for use in (8); γ is required for (11).

and B̂0 = 100mT, to be used in

Pv = max
(

K1(f/f0)
α1(B̂/B̂0)

β1 +K2(f/f0)
α2(B̂/B̂0)

β2

)

(10)

Both are included because the (8) is simpler to use, but the values of K1 and
K2 are more physically meaningful, because they are based on results near the
range of values used in practice, rather than on values many orders of magnitude
different.

For example, the values of K for one core shape are very similar to those for
another core shape and the same material, indicating that the losses predicted
by the model are very similar for the two shapes. The values of k, on the other
hand, can be very different, but this is only an artifact of the use of the 1 T and
1 Hz reference points, which are distant from the actual operating point, and is
not an indication that the predictions in the region of interest are significantly
different.

The results tend to indicate slightly smaller losses for E cores than for toroidal
cores made with the same material. This does not actually indicate of superior
performance for E cores. Rather, it is a result the effective area and effective
core length provided one the core datasheet, which we used in our calculations.
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5.1 Model in Terms of Pulse Width and Voltage

The model (8) can be reformulated in terms of pulse width and voltage. For
direct use with that composite with form hypothesis, we also reformulated it to
represent the energy loss for one pulse, rather than the average power loss over
a whole cycle. This results in energy loss per pulse, per unit volume, of

Ev,a = max

(

k1
(NA)β12(β1+α1)

V β1

a tγ1

a ,
k2

(NA)β22(β2+α2)
V β2

a tγ2

a

)

(11)

where Va is the voltage applied during a pulse of duration ta, A is the cross-
section area of the core, and N is the number of turns. The parameter γ is
provided in Table 2, for convenience, but can also be simply calculated from α
and β:

γ = 1 + β − α. (12)

The application of this formula is illustrated in Appendix B.

6 Dead-Time Loss

In Phase I, we discovered a significant deviation from the CWH during periods
of prolonged constant flux. This was most evident with the expand waveform,
in which a square wave is stretched by inserting off-time between the square
pulses—thus increasing the period while holding the pulse widths constant. For
example, in Figure 12 we plot loss versus off time, t0. The “predicted” value is
simply the loss measured for the characterization square-wave measurement. In
contrast, the CWH works well for the asymmetric waveform (Figure 13), which
has no dead time

The effect is also noticeable in plots of the skew waveform (Figure 14). The
core loss is uniformly higher than for square waves, at about the same value
as seen for the expand waveform having the same period. Unlike the expand

waveform, the plot is not significantly slopped—the increased loss due to greater
off time in one part of the waveform is about offset by the decreased loss due to
lesser off time in the other part.

In Phase II, we want to determine if the phenomenon is real, and if so,
possibly characterize it.

6.1 Measurement Artifacts

In order to check for possible errors introduced by the apparatus, we repeated a
representative experiment with (1) a dc current probe, and (2) increased bridge
blocking capacitance. Neither precaution made a significant difference.

The magnetization current is routinely measure using a Tektronix P6021
ac current probe (set to 10mA/mV). For this experiment we substituted a
Tektronix TCP303 current probe. As an extra precaution, we did the probe
degaussing procedure before each run. (Run set mi05-5)
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B Example Application

This section will demonstrate an example of using the two-plane Steinmetz fit
parameters in Table 2 to calculate loss for an unusual waveform. The loss will
be calculated using the conventional Steinmetz parameters of frequency and flux
amplitude, and then the example will be repeated using voltage and pulse width
as parameters. The design parameters for the example are shown in Table 4,
and the waveform in Figure 16. The calculation of core loss would be identi-
cal whether this were an inductor or a transformer, and so we do not specify
which. In the case of a transformer, there might be different numbers of turns
and voltages on different windings, but the number of turns and corresponding
voltage on any one winding would be adequate information.

B.1 Conventional Parameters

For the calculation based on frequency in flux density, we first calculate the
amplitude of the flux density,

Bpeak−to−peak =

∫

vdt

NA
=

5 · 75 Vµs

20 · 154.8× 10−6 m2
= 0.12112 T (20)

B̂ =
Bpeak−to−peak

2
= 0.06056 T (21)

Next, we need the square-wave loss for that flux amplitude, and for each of
the pulse widths in the waveform: 5 µs and 7.5 µs. A square wave with a pulse
width of 5 µs would have a period of 10 µs, and thus a frequency of 100 kHz.
A square wave with a pulse width of 7.5 µs would have a period of 15 µs, and a
frequency of 66.7 kHz. Based on the parameters in Table 2 for 3C90 material,
we can calculate the square wave loss from (8). To do that, we calculate first
with k1, α1, and β1, and then again with k2, α2, and β2, and we select the larger
of the two calculated values. For example, at 100 kHz, for k1, α1, and β1,

Pv,1 = 36.86 · (100× 103)1.19 · (0.061)2.94 = 8819 W/m
3

(22)

The results for these calculations for each of the two frequencies and for each of
the two parameter sets are shown in Table 5.

Parameter Value
Core shape PQ32/30
Core material Ferroxcube 3C90
Effective core area, A 154.8 mm2

Effective core volume 10.44 cm3

Number of turns, N 20

Table 4: Example design parameters.
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Figure 16: Example design voltage waveform applied across the winding of the
device.

Plane 100 kHz 66.7 kHz
k1, α1, β1 8.63 kW/m3 5.33 kW/m3

k2, α2, β2 6.04 kW/m3 2.29 kW/m3

Table 5: Calculated square-wave loss.

From Table 5, we choose the maximum value in each column, to implement
the maximum function in (8). In this case, the values in the first row of the
table are the maxima for both frequencies.

We now have the square-wave power loss values, and in preparation for
using the composite waveform hypothesis, we convert the form of these values
to obtain the energy lost in each pulse. For the positive, 5 µs pulse, the energy
loss is simply the pulse width multiplied by the corresponding power per unit
volume: Ea = 5 µs · 8.63 kW/m3 = 43.2 mJ/m3 per pulse. Similarly, for the
negative pulse, Eb = 7.5 µs · 5.33 kW/m3 = 40.0 mJ/m3. The total loss for
cycle is the sum of the loss for each of these pulses, or 83.2 mJ/m3. We can
now convert that back to a power loss number by dividing by the total period,
18.3 µs, which results in a power per unit volume Pv = 4.54 kW/m3. Based
on the fact that kW/m3 are the same as mW/cm3, we can multiply that loss
number by the volume in cm3 to obtain the final power loss in milliwatts:

P = 4.64 · 10.44 = 47.4 mW (23)

One can easily automate this calculation using Excel, Matlab, or any pro-
gramming language, but it has been presented here in terms of the manual
process in order to ensure that all the steps are clear without reference to any
particular programming language.
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B.2 Pulse width and Voltage as Parameters

In this case, we directly apply (11), repeated here for convenience:

Ev,a = max

(

k1
(NA)β12(β1+α1)

V β1

a tγ1

a ,
k2

(NA)β22(β2+α2)
V β2

a tγ2

a

)

(24)

We substitute in values from Table 4 and values of parameters k1 = 36.86,
α1 = 1.19, beta1 = 2.94 and γ1 = 2.75 for the first set and k2 = 2.895, α2 = 2.39,
beta2 = 2.16 and γ2 = 2.77 for the second. We obtain, for 5 µs and 75 V,
Ev,a = 43.2 mJ/m3, and, for 7.5 µs and 50 V, Ev,b = 40.0 mJ/m3, exactly the
same as was found with the other approach. Any difference would only occur
as a result of roundoff errors tracking through the calculation.

As before, the total loss for cycle is the sum of the loss for each of these
pulses, or 83.2 mJ/m3. We can now convert that back to a power loss number
by dividing by the total period, 18.3 µs, which results in a power per unit volume
Pv = 4.54 kW/m3, and an average power loss of 47.4 mW.

28




