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• Conventional Core Design Review
• What is Strain-Annealing? & Why use Strain-Annealed cores?
• A quick review of Strain-Annealing manufacturing process
• Design and Prototyping Activities
• DOE’s the Office of Electricity's (OE) Transformer Resilience and 

Advanced Components (TRAC) program
• Advanced Data Sheet for soft magnetics materials and 
• Multi-objective genetic algorithm design optimization

• Key Take-Away Messages

Presentation Overview
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Gapped cores: Ferrite and metal ribbon cores

Core has a fixed and high  
permeability value

Changes of effective permeability and linearization of the B-H loops caused by increasing 
air gap. Zurek, Encyclopedia Magnetica, CC-BY-3.0.

As gap size increases, 
effective permeability 
reduces

• Need to precisely control the 
gap length, and it can be 
difficult 

• Extra losses due to gaps
• Fringing flux and winding 

losses
• Proximity losses
• Eddy current losses due to 

shorted cut surface

http://www.encyclopedia-magnetica.com/
http://creativecommons.org/licenses/by/3.0/
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• Increased power density
• Reduce proximity losses
• Enable use of  a larger winding area 

by reducing fringing flux

Distributed discrete gaps with ferrites

https://www.tdk-electronics.tdk.com/download/2113430/7dc6417a70e37082863776922b6e0d52/ferrites-air-gaps-pb.pdf

• Lower winding losses compared 
to a single large air gap

• Reduction of  core size
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Conventional core design

1. “Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultrahigh pressure” 
Tatsuya Saito, et al. AIP Advances

2. Kool Mu Core Data “39.9mm OD” www.mag-inc.com

Distributed gap cores: Powder cores

Inductance vs Current is nonlinear

• Fixed permeability 
• Limited size
• Nonlinear saturation 

characteristic (varying 
inductance)
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Is there a core that has
•No gaps,
•Linear BH characteristic,
•High saturation,
•No size limitation, and
•Custom tuned permeability?
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• Strain-Annealing is an advanced annealing 
treatment process used on amorphous metal 
ribbons (AMRs) to promote nano-
crystallization.

• Revolutionary process due to its ability to allow 
for in-line processing of  AMRs prior to final 
winding.

Path Towards New Technologies
What is Strain-Annealing?

As-Cast Amorphous Metal Ribbon

Why use Strain-Annealed Cores?
• Allows for customizable magnetic and thermal 

properties

• Reduces the number of  process steps

• There is a need for new core technology! 
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Manufacturing Steps:  Metal Ribbon Fabrication

Planar Flow Casting (PFC), 0.25”-2” widths

• Amorphous metal alloy ribbons can be casted up to 2” 
(50.8mm) wide at ~15-25 µm thickness.

• Each planar flow cast makes a spool of ~2000 feet (~600 
meters); however, the length can be unlimited.

Strain-Annealing & 
Later ProcessesSpoolingPlanar Flow 

Casting (PFC)
Raw

Materials

COPPER DRUM

NOZZLENOZZLE



9

Video of Strain-Annealing Process
• Strain-Annealing is a key processing technique being leveraged in 

advanced alloy and core design and optimization.

Temp 
Control

Tension 
feedback

Speed Control
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Strain-Annealing with Cobalt-based Alloys

“Square Loop” with 
High Relative 
Permeability

“Sheared Loop” with 
Low Relative 
Permeability

Co80-x-yFexMnyNb4Si2B14

Control Factors:
• Alloy Chemistry
• Applied Tension
• Anneal Temp/Time

Characteristics:
• Improved mechanical properties
• Higher induced anisotropy
• Temperature stable anisotropy
• ‘Tunable’ permeability (see below)
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Design and Prototyping Activities:

Power 
Inductors For 
1 MW-Scale 

Next 
Generation 
Electrical 
Machinery

Three-Port 
High 

Frequency 
Transformers 
For SuNLaMP 

Program

Engineered 
Permeability 

Cores 
Through 
Advanced 
Magnetics 

Manufacturing

High Speed, 
High Efficient 
Motor Project 

Using High 
Frequency 

Design

Partner with



12

Constant Perm Core

Graded Perm Core

“flux-smoothing”  a more uniform flux distribution  better temperature distribution
Permeability Engineering: Application Example

60

80

100

120

140

160

180

200

0 100 200 300 400 500

Te
ns

io
n,

 M
Pa

Length, feet

Tunable with Constant Tension

µr=38.3
Tunable

50
70
90

110
130
150
170
190
210
230

0 100 200 300 400 500

Te
ns

io
n,

 M
Pa

Length, feet

Graded with Ramped Tension

µr=44.5

µr=27.8Graded

µr=44.5µr=27.8

µr=38.3



13

Constant Permeability vs. Graded Permeability Cores
Permeability Engineering: Application Example

• 20 kHz square-wave excitation
• Input voltage = 250Vdc
• 50 turns primary, 10 turns secondary
• 30 minute continuous test (Bpeak = 0.15T)
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Constant Permeability vs. Graded Permeability Cores
Permeability Engineering: Application Example

• 20 kHz square-wave excitation
• Input voltage = 220Vdc
• 50 turns primary, 10 turns secondary
• 30 minute continuous test (Bpeak = 0.13T)

Constant Perm Core
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Design and Prototyping Activities:

Power 
Inductors For 
1 MW-Scale 
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Machinery
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Power Inductors for 1 MW-scale Next-Generation Electrical Machinery
Permeability Engineering: NGEM Inductor

Liquid immersion cooling of  a 
MW power, 4160V, high 
frequency inductor for medium 
voltage drive:
• Medium voltage isolation
• Low loss fragile core
• Super high power density
• Low loss low capacitance winding

Strong non-conductive fixture

3D printed core 
holder with rubber 

interface

Gapless low loss 
nanocrystalline

strain-annealed core

3D printed ceramic bobbin 
with oil flow passage

Multi-strand wire to 
reduce loss and 
enhance heat 

transfer

Lab prototype

12’’
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• Three types of  materials 
compared for 440 µH filter 
inductor application

• Kool Mu powder core
• Iron-alloy powder core
• Strain-annealed MANC core

• Constraints/Considerations
• Size/mass, permeability and 

inductance stability, power 
density, and cooling 
feasibility

Power Inductors for 1 MW-scale Next-Generation Electrical Machinery
Permeability Engineering: NGEM Inductor

Kool Mu powder
• Distributed gap
• Glued arc/bar 

segments
• Edge-wound coil
• Liquid cooling with 

pump
• 60 kg total mass

Iron-alloy powder
• Distributed gap
• Potted assembly
• Liquid cooling with 

pump
• 100 kg total mass

Strain-annealed
• Gapless design
• Custom bobbin 

and multi-strand 
wire

• Oil immersion
• 12 kg metal mass
• 20 kg total mass
• 2-2.5X smaller
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Design and Prototyping Activities:

Power 
Inductors For 
1 MW-Scale 
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• Permeability tuned cores are
• placed between primary, secondary, and tertiary windings.
• utilized to control the leakage inductances.
• utilized to reduce inter-winding and self  capacitances.
• utilized to minimize the losses due to normal fluxes.

Tri-Axial Winding Transformers
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•Permeability is DIRECTLY 
engineered and customized

• Strain-annealing is an advanced 
manufacturing process with 
advantages in

• Eliminates the gaps 
• Better core utilization via Flux-smoothing 

and/or core temperature-smoothing
• Manufacturability of Large Components
• Core size reduction (High power density)
• Efficiency increase (Low losses)
• Very linear BH characteristic

Permeability engineering with 
strain-anneal manufacturing process

Pilot-scale Strain Annealing Machine
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DOE OE TRAC Program 
• DOE’s the Office of Electricity's (OE) Transformer 

Resilience and Advanced Components (TRAC) program is 
sponsoring 
• Advanced Data Sheet for soft magnetics materials and 
• Multi-objective genetic algorithm design optimization
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Enabling Magnetics Modeling & Optimization
Advanced Optimization methods for Magnetic Components
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Engineering” method 
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• A new set of open source tools for 
component design in this emerging area will 
be provided to industry and other research 
groups.
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Magnetic core characteristics of Custom and Commercially Available Cores are published in data sheet 
format as a Resource for Community. The data sheets include BH loops and core loss measurements as a 

function of excitation waveform. 

Standardized Magnetic Core Characterization
Published in data sheet format
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• Five datasheets of five representative core materials 
are completed.

• Standard Electrical Steel (3% Si)
• Hi Si content electrical Steel core (6.5% Si)
• Nanocompsite cores (MK Magnetics)
• Amorphous Fe-based core (MK Magnetics)
• Ferrite core (EPCOS/TDK, N87 material)

• Published to public under “Data Sheets - Soft 
magnetic core material data sheets sponsored 
by the DOE Office of Electricity's (OE) 
Transformer Resilience and Advanced 
Components (TRAC) program” at 

• https://netl.doe.gov/TRS
• https://netl.doe.gov/node/8081

• More data sheets on different materials are 
being generated and added as they become 
available.

Publicly available data sheets

https://netl.doe.gov/TRS
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• Permeability engineering via Strain-Annealing is an advanced magnetic 
component design method with advantages in 

• Core utilization, size, peak temperature performance, efficiency, and linear BH 
characteristic. 

• Custom magnetic component design
• Inductors with “flux-smoothing”
• Inductors for high power (1MW), high power density, low losses

• Multi-objective optimization method is being researched to fully utilize the 
capability of permeability engineering. 

• Core characterization information of different core materials are being 
published in data sheet format as a resource for power electronics 
community. 

Key Take-Away Messages
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• Tunable anisotropy of co-based nanocomposites for 
magnetic field sensing and inductor applications

• Patent number: 10168392

• Abstract: A method includes producing an amorphous 
precursor to a nanocomposite, the amorphous precursor 
comprising a material that is substantially without crystals 
not exceeding 20% volume fraction; performing 
devitrification of the amorphous precursor, wherein the 
devitrification comprises a process of crystallization; 
forming, based on the devitrification, the nanocomposite 
with nano-crystals that contains an induced magnetic 
anisotropy; tuning, based on one or more of composition, 
temperature, configuration, and magnitude of stress applied 
during annealing and modification, the magnetic anisotropy 
of the nanocomposite; and adjusting, based on the tuned 
magnetic anisotropy, a magnetic permeability of the 
nanocomposite.

• Type: Grant

• Filed: May 15, 2014

• Date of Patent: January 1, 2019

• Assignees: Carnegie Mellon University, SPANG, INC., U.S. 
Department of Energy

• Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. 
McHenry, Vladimir Keylin, Joseph Huth, Samuel J. Kernion

Patent disclosures
• Tunable Anisotropy of Co-Based Nanocomposites for Magnetic Field 

Sensing and Inductor Applications

• Publication number: 20160319412

• Abstract: A method includes producing an amorphous precursor to a 
nanocomposite, performing devitrification of the amorphous 
precursor, forming, based on the devitrification, the nanocomposite 
comprising an induced magnetic anisotropy, and for a first portion of 
the nanocomposite, determining a desired value of a magnetic 
permeability of the first portion, tuning, based on the desired value, 
the induced magnetic anisotropy for the first portion, and adjusting, 
based on the tuning of the induced magnetic anisotropy of the first 
portion, a first magnetic permeability value of the first portion of the 
nanocomposite, wherein the first magnetic permeability value is 
different from a second magnetic permeability value for a second 
portion of the nanocomposite.

• Type: Application

• Filed: July 8, 2016

• Publication date: November 3, 2016

• Inventors: Alex M. Leary, Paul R. Ohodnicki, Michael E. McHenry, 
Vladimir Keylin

https://patents.justia.com/patent/10168392
https://patents.justia.com/patent/20160319412
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• DOE Office of Electricity (OE) Transformer Resilience and Advanced Component (TRAC) Program
• DOE EERE SunShot Initiative SuNLaMP Program:

• Combined PV / Battery Grid Integration with High Frequency Magnetics and Wide Bandgap Semiconductor Enabled Power 
Electronics (NETL Led)

• DOE EERE Advanced Manufacturing Office NGEM Program (Eaton Led)
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• End of  Presentation
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