

Soft magnetic Metal-flake Composite Material Suitable for High Frequency Power Modules

Ken'ichi Chata'ni TOKIN Corporation

19 Mar. 2019

Ken'ichi Chata'ni, Ph.D.(Physics)

Manager, Advanced Materials R&D Division TOKIN Corporation

7-1 Koriyama 6-Chome, Taihaku-ku, Sendai, Miyagi 982-8510 Japan

kenichichatani@kemet.com

TOKIN History

April 1938 as University Startups

Established to commercialize <u>KS magnetic steel</u> (by Prof. Kotaro Honda) and <u>Sendust</u> (by Prof. Masumoto Hakaru), both invented at Tohoku Imperial University, Sendai, Japan.

2010

April 2002

Main Products

Tantalum capacitors, Electric double-layer capacitors, EMI/Noise suppression components, Power inductors, Transformers, Piezoelectric devices, Sensors.

April 2017

Became NEC TOKIN Corporation

(3 SBUs from NEC: capacitors, relays, and batteries)

Name changed to TOKIN Corporation

become a 100% subsidiary of the United States based KEMET Corporation

October 1988 Name changed to TOKIN Corporation

1990

2000

February 2013 Started business and capital partnership with KEMET Corporation

1930

 Material characteristics of FlakeCompositeTM, in comparison with existing magnetic materials.
-Permeability, magnetic saturation, core loss, etc.

Inductor performance benchmarking.

PCB embedded inductor test fabrication result.

Low-profiled inductor for integrated DC/DC converter is required.
PCB embed enabling magnetic material will also be required in future.

What is FlakeComposite[™]?

Comparison of Magnetic Materials for PCB Embedding

Effect of Powder Shape on Permeability and Flexibility

≻10 times improvement in permeability and <u>flexibility</u>

© **TOKIN** 2019

Permeability vs Frequency

Frequency dispersion of complex permeability

Comparable to NiZn ferrite for MHz power application.

A **KEMET** Company

Limitation

Lower Out-plane permeability.

Core Loss

Core loss of FlakeComposite is comparable to NiZn ferrite, but much larger than MnZn ferrite at few MHz.

Magnetic Saturation (BH curve)

- Soft-saturation in FlakeComposite.
- Smaller drop of saturated magnetic moment against temperature, comparing to MnZn ferrite.

 \geq In metals, permeability under DC-bias field is insensitive to temperature.

> In metals, permeability survives under high DC-bias field.

© **TOKIN** 2019

Effect of Plane Compression

> Only 7.6% permeability decrease under 1000kgf/cm² compression.

A **KEMET** Company

- Only 2.7% permeability decrease after 1000kgf/cm² compression.
- \succ No apparent damage was found.

 Material characteristics of FlakeCompositeTM, in comparison with existing magnetic materials.
-Permeability, magnetic saturation, core loss, etc.

Inductor performance benchmarking.

PCB embedded inductor test fabrication result.

Lateral Flux Inductor Structure

Qiang Li, Fred C. Lee, "High Inductance Density Low-Profile Inductor Structure for Integrated Point-of-Load Converter", 2009 IEEE Applied Power Electronics Conference and Exposition (APEC), Washington, District of Columbia, Feb. 15 – 19, 2009, pp. 1011 – 1017.

Dongbin Hou, Yipeng Su, Qiang Li, Fred C. Lee, "Improving the Efficiency and Dynamics of 3D Integrated POL", IEEE Applied Power Electronics Conference and Exposition (APEC), 2015, pp. 1011 – 1017.

FlakeComposite is suitable to demonstrate the proposed advantage of "Lateral flux" inductor design.

A **KEIVIET** Company

As inductor goes thinner, the advantage of "Lateral flux" inductor structure should be more prominent.

Benchmarking Result

The advantage of FlakeComposite Lateral flux inductor becomes prominent as the inductor height goes lower.

Reliability Test Example (On samples to CPES)

Sample Structure

• Tin plated lead frame and Cu pins (without insulation coating) are attached on the FlakeComposite core.

- Acceptance Criteria:
 - Change of Ls, Rs and
 - DCR<10% pre-test to post-test.

A KEMET Company

 No cracks, chips or discoloration

Storage JES	ESD22-A119 JESD22-A103 Condition B		Result (N=22)
	-50°C	1000h	Pass
	150°C	1000h	Pass
Heat Cycle JES	D22-A104 Condition C Soak Mc		
	-65⇔150°C	500cycle	Pass
Hi Temp and Humidity MIL-STD-202 Method 103			
	85°C85%	1000h	Pass
Unbiased Hast JESD22-A118			
With MSL 3 Pre-Conditioning	130°C85%	96h	Pass
	33.3psia(2.3atm)		
MSL test (Level 1) J-STD-020E			
Pre-bake	125°C	24h	
Moisture Soak	85°C85%RH	192h	Pass
Reflow	260°C x 3		

> AEC-Q200 compatible. (RoHS2.0, Halogen free, REACH compliant.)

Application Target

Power Inductors

Magnetic Sheets

 Material characteristics of FlakeCompositeTM, in comparison with existing magnetic materials.
-Permeability, magnetic saturation, core loss, etc.

Inductor performance benchmarking.

PCB embedded inductor test fabrication result.

PCB Embedded Inductor Demonstrated by CPES

Y. Su, W. Zhang, Q. Li, F. C. Lee, and M. Mu, "High frequency integrated Point of Load (POL) module with PCB embedded inductor substrate," in *Energy Conversion Congress and Exposition (ECCE), 2013 IEEE*, 2013, pp. 1243-1250.

0 0 0 0 Similar prototypes were fabricated.

PCB Embedded Inductor Prototype

C

TOKIN

With inserted

pins

0.8mΩ

With inserted

pins

 $2.1 m\Omega$

30

40

1mm 信年:X20.0

1mm 信率:X20.0

A KEMET Company

Dispersion of Inductance , |Z|

> Tight tolerance of inductance is readily achieved in prototypes.

- ➤ FlakeCompositeTM is:
 - -Thin, Flexible, PCB-embed-enabling,
 - -High permeability at multi-MHz swithcing frequency,
 - -High-saturated magnetic moment than ferrite,
 - -High temperature tolerant

soft magnetic material for power supply application.

- We believe this material will contribute to the miniturization of electronic circuits, especially in:
 - DC/DC converters,
 - Wireless Power Transfer system.

> We are continuing to scale-up this technology for use in several applications.

Thank you very much for your attention.