25MA

The Multinational Power Electronics Association

PSMA PELS Capacitor Workshop Rating MLCCs for AC Applications John Bultitude, March 19, 2022

> john.bultitude@yageo.com KEMET Electronics Inc. Ceramic Innovation Center 2835 KEMET Way, Simpsonville, SC 29681 USA

Presentation Outline

External Factors Affecting Performance

AC Performance Considerations

- High AC Voltages
- I²R Heating

Power Application Trends

Wide Bandgap (WBG)

LLC Resonant Converters

Resonant Wireless (~ 85kHz) Power Transfer (WPT)

Capacitor Basics *MLCC Materials & Performance*

Class I Vs Class II MLCCs

Class I Paraelectric low K, Examples COG & U2J Class II Ferroelectric high K, Example X7R

- Change of capacitance with temperature -55 to +125°C (Ref 25°C) is a key characteristic:
 - X7R +/- 15%
 - o C0G +/- 30 ppm/°C
 - o U2J −750 ±120 ppm/°C
- X7R MLCCs capacitance is reduced further at high AC & DC voltages
- Some typical values & voltage ratings of KEMET Ni compatible dielectrics are shown in the table

Dielectric	K	DF	Rated DC
X7R	2400-3700	> 1%	6.3 – 3000V
COG	31	< 0.1%	6.3 - 10,000V
U2J	82	< 0.1%	6.3 – 100V

Class I Vs Class II MLCCs

Attributes for Power Applications

Capacitor Requirements / Attributes	Wide Bandgap		LLC	Resonant Wireless	Class I BME C0G	Class II BME X7R
	DC-LINK	Snubber		Fower fransier		
Capacitance Density	•	0	0	0	0	•
Capacitance Stability vs Temperature	0	0	•	•	•	0
Capacitance Stability vs Voltage	0	0	•	•	•	0
Low ESR	•	•	•	•	•	0
Low Inductance	•	•	0	0	•	•
High DC Voltages	•	•	•	•	•	•
High AC Voltages	•	•	•	•	•	0
High AC Current	•	•	•	•	•	0
High Temperature Operation (>125C)	•	•	0	0	•	•
High Frequency Operation (>100kHz)	·	•	•	0		0

• - Critical Characteristic

o - Important Characteristic, but not Critical

Capacitor Requirements a Good Match for Class I Ni BME COG Attributes but capacitance density is a challenge

Increasing Capacitance – KONNEKT[™] Technology

Two mounting orientations

STANDARD LOW-LOSS

Low-Loss Benefits

- ✓ Lower ESR
- ✓ Lower Thermal Resistance
- Lower Inductance
- ✓ Higher Ripple Current

Switched Tank Converter

48V to 12V Power Conversion have 98.92% efficiency In Data Centers

Development and Characterization of Resonant Capacitors and Inductors for Switched Tank Converters, J. Bultitude & Y. Saito et al

Two Considerations for AC Applications

AC Characteristics Class I and Class II MLCCs

Impedance and ESR for Class 1 and Class 2 MLCCs

Heating Due to I²R Losses Current-Limited Region

Heating Due to I²R Losses Current-Limited Region

$$I_{C} = V_{C} \frac{1}{\left[ESR + j\omega ESL - \frac{1}{j\omega C}\right]} \omega = 2 * \pi * f$$

Note: ESL ~ 1nH so negligible effect on AC current until very high frequencies If AC Voltage is Held Constant:

- Higher frequencies result in higher AC currents
- Higher capacitance results in higher AC currents

At higher frequencies and capacitance values, even low AC voltages can generate a lot of AC current:

Capacitance	Frequency	AC Voltage	AC Current
15 nF	100 kHz	40.1/	0.094 A _{rms}
150 nF	1 MHz	IU V _{rms}	9.4 A _{rms}

ESR

where

Heating Due to I²R Losses

Current-Limited Region

ESL

Temp. Rise vs Ripple Current - CKC33C153KDGACAUTO @ 25°C, 0V, R0 = 78.0 °C/W

Temperature Zone	Risk
≤ 25°C above ambient	Low Risk
> 25°C to \leq 50°C above ambient	Medium risk, dependent upon application
> 50°C above ambient	Increased risk of thermal runaway

Where do we get R_{Θ} ?

Active (parallel plate dielectric layer)

An effective K is calculated for active region from the parallel combination of R_{Θ} per square of Nickel and CaZrO₃ for the number of electrodes and actives in MLCC

Plated Sn finish for

Solderability

Internal Electrode

Nickel (BME)

APEC 2019, IS12: 'Thermal Modeling Challenges for MLCCs in High Power Density Assemblies' Allen Templeton et al

Ceramic Dielectric C0G based on CaZrO₃

External Factors Affecting AC Current Performance

- AC Current depends not only on the I²R losses, but also:
 - Ambient temperature
 - Thermal characteristics of PCB
 - Active/passive cooling of the MLCC
 - Proximity of the part to other sources of heat (i.e., other capacitors or semiconductors on the same PCB)

YAGEO

Electrothermal Simulations @ 500kHz & 20Arms Standard Vs 2-Serial

Standard 3640, 33nF, 650V, C0G

2-Serial 3640, 47nF, 1200V, C0G

 2 Serial design with more electrodes dissipates heat better than standard in this example but is a much thicker MLCC

Session T04: 'Steady-State Heat Transfer in Class I MLCCs for Resonant Power Converter Applications' Hunter Hayes

Thermal Simulations of 5x5 Arrays of 1210 MLCCs @ 0.5W/MLCC

PCB Attribute	# 1	# 2	#3
Cu Thickness (oz/ft ²)	2	4	2
PCB Dielectric Thermal Conductivity (W/m-K)	0.35	0.35	2
Max. Array Temperature (°C)	133.4	130.9	50.8

Circuit Board Thickness = 1.5mm; MLCC Separation 2mm

Class I COG MLCCs for Resonant Applications

- Stable capacitance
- High ripple current performance

Capacitance Change vs Temperature 10 Cap change [%] 5 -35 -55 -15 5 25 45 65 85 105 125 145 **Temperature** [°C]

https://content.kemet.com/datasheets/KEM_C1039_KC-LINK_C0G.pdf

High AC Voltages Voltage-Limited Region

High AC Voltages Voltage-Limited Region

Note: ESL ~ 1nH so negligible effect on AC current until very high frequencies

If AC Current is Held Constant:

- Lower frequencies result in higher AC voltages
- Lower capacitance results in higher AC voltages

Even if ripple current does not cause excessive heating, peak AC voltage needs to be considered

Two AC Voltage Rules

Two AC Voltage Rules

Rule #2 example:

Example: CKC21C123KEGAC EIA 2220 / 12nF / 1,200V / Class I C0G

 $V_{p} = 520V$ $520V < \frac{V_{rated DC}}{2}$ $2V_p = 1,040V < V_{rated DC}$ 87% of DC Rating

New Products – Reduced Heating in Voltage Limited Region

- Voltage Enhanced U2J (VEU2J) MLCCs have been developed with reduced ripple current heating
- Patents are Pending
- C3640C153JGJACTU will be released June 2022

3640 15nF 2000V_{DC} Rated VEU2J MLCC Ripple Current Heating @ 85kHz 25°C

Circuit Board $R_{\Theta} = 12 \text{ °C/W}$ No cooling, static air

Summary

- The electrical characteristics of Class I MLCCs make them suitable for many high-power applications
- The performance of these MLCCs in AC voltages depends on their ripple current heating at higher frequencies and voltage capability at lower frequencies but...
- The circuit board design & application environment with respect to heat dissipation must be considered
- Better models of electrothermal performance are giving us better insights into these factors
- New MLCCs are being developed using patent pending technology that can have reduced heating at higher AC voltages

Acknowledgements

- Thanks to my many collaborators & colleagues at KEMET
- ANSYS[®] for their support of our Electrothermal Model developments

Any Questions?

©KEMET Corporation. All Rights Reserved.