

Powder Core Development and High Frequency Considerations

Brad Van Fleet Sales Engineer

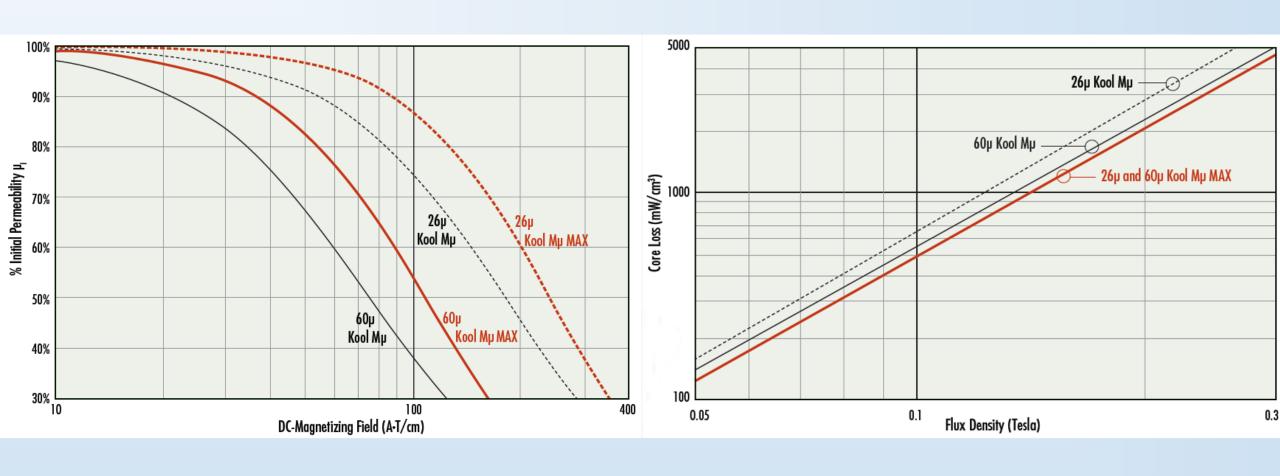
Overview

- Powder Core Development
 - Expansion of Kool Mμ[®] Max product line
 - XFLUx[®], new permeabilities
 - Shapes Development
 - Round Leg U-Core Geometries
 - EQ26
 - R&D Pipeline
 - Improved High Flux (58 and 59 materials)
 - High Frequency Powder Core Material
- High Frequency Considerations
 - Current Material Comparison
 - Perm vs. Frequency
 - Core Loss

Kool Mµ MAX

- Superior DC Bias performance and lower losses compared to standard Kool Mµ
- Lower cost compared with MPP and High Flux.

General Information	
Permeability	26μ, 40μ, 60μ
Alloy Composition	Fe/Si/Al
Saturation Flux Density	1 Tesla
Curie Temperature	500°C
Operating Temperature Range	-55 to 200°C
OD Size Range (mm)	13.5 - 134
Coating Color	Black



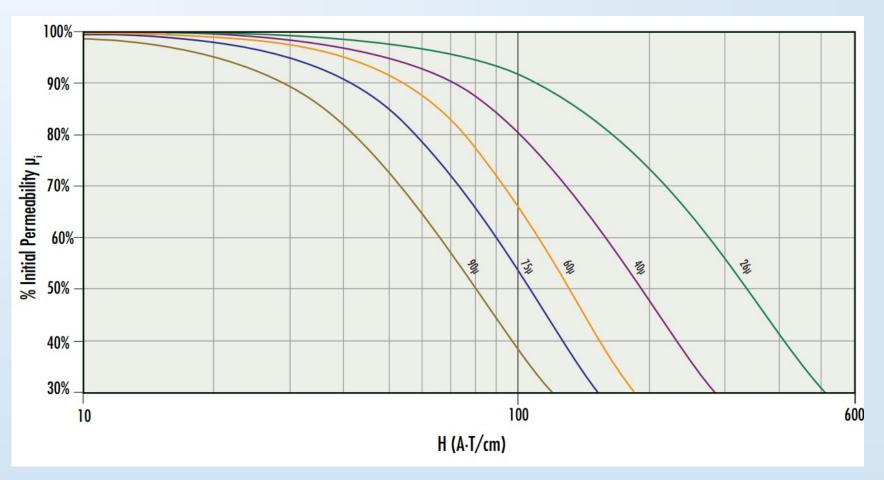
19μ /75μ/90μ and Shapes (E-Cores, U-Cores, Blocks) in Development

Kool Mµ Max - Performance Comparison

Material (60μ)	DC Bias a	DC Bias at x Ls (Oe)		Core Loss (mW/cm³)	
	80%	50%	W _{1000 G, 50 kHz}	W _{1000 G, 100 kHz}	Price Scale
Kool Mμ MAX	68	135	190	500	2.0
Kool Mμ	43	95	210	550	1.0
XFLUX	89	175	680	1550	1.2
High Flux	87	165	350	900	4.0
МРР	60	106	175	450	7.0

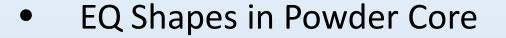
Kool Mμ Max vs. Kool Mμ

XFLUX— new permeabilities


- Silicon Iron Alloy Powder
- Cost 40-50% less than High Flux
- Applications:
 - Low & medium frequency chokes, where inductance at peak current is critical.
 - Where High Flux would be used but cost is a constraint.

Available in Toroids, E-Cores, U-Cores, and Blocks

$XFLUX - 75\mu$ and 90μ


Now available in 050 (13.5mm OD) to 102 (103mm OD) size toroids.

• 19μ coming in next few months

Shapes Development

- Round-Leg U-Cores
 - Rounded blocks and cylinders
 - Helical Windings
 - 84mm x 30mm Block + 30mm Cylinder
 - Expanding to industry standard sizes

- Focused on EQ 26/19, three leg lengths.
- Available in 60μ XFLUX
- High Flux and Kool Mμ development next
- EQ 32 will be next available size

Magnetics' R&D

Improved High Flux and Next Generation High Flux (59)

Matarial (60u)	DC Bias at x Ls (Oe)		Core Loss (mW/cm³)	
Material (60μ)	80%	50%	W _{1000 G, 100 kHz}	
High Flux	87	165	900	
Improved High Flux	100	185	800	
Next Gen High Flux (59)	125	215	<500	

High Frequency Powder

- Optimize Losses from 500kHz to 3MHz
- Material selection still under consideration looking at Sendust base
 - Potentially multiple materials optimized for different frequency ranges
- Looking to market to determine best options
 - Where is highest demand?

2019

2020

Kool Mµ MAX

New Perms

19μ, 75μ & 90μ

New Shapes

Blocks, E, U, I

XFLUX

75 μ and 90 μ , Addition of 19 μ

New Geometries

EQ26 in XFLUX EQ32 Round Block/Cylinder Expansion

Other EQ sizes/materials

58 Series

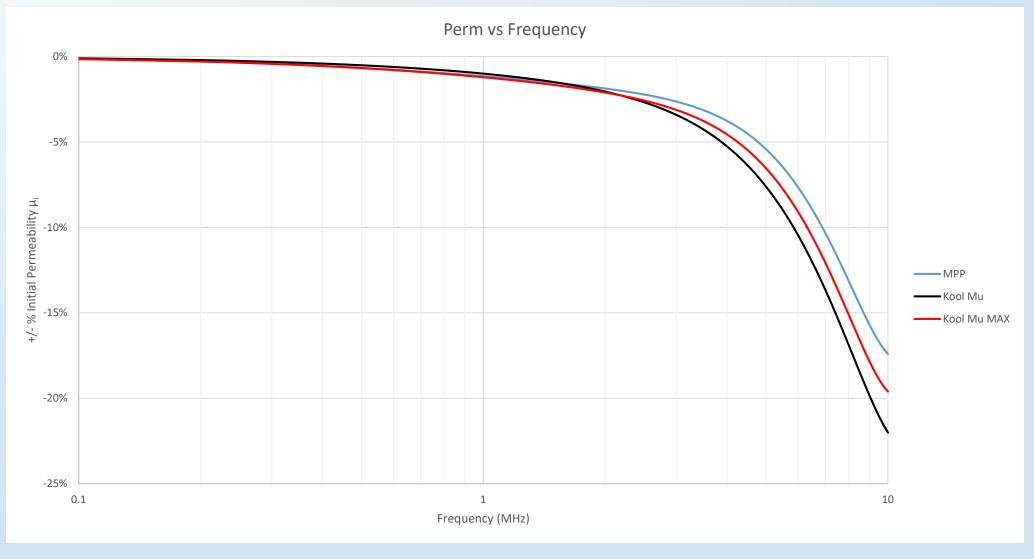
Improving standard High Flux

59 Series

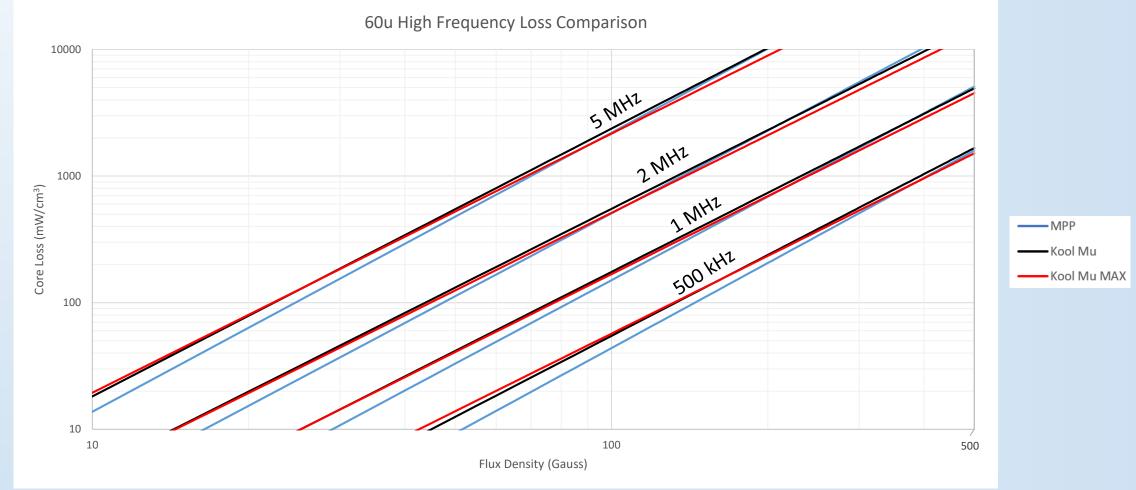
Next Generation High Flux

High Frequency Material

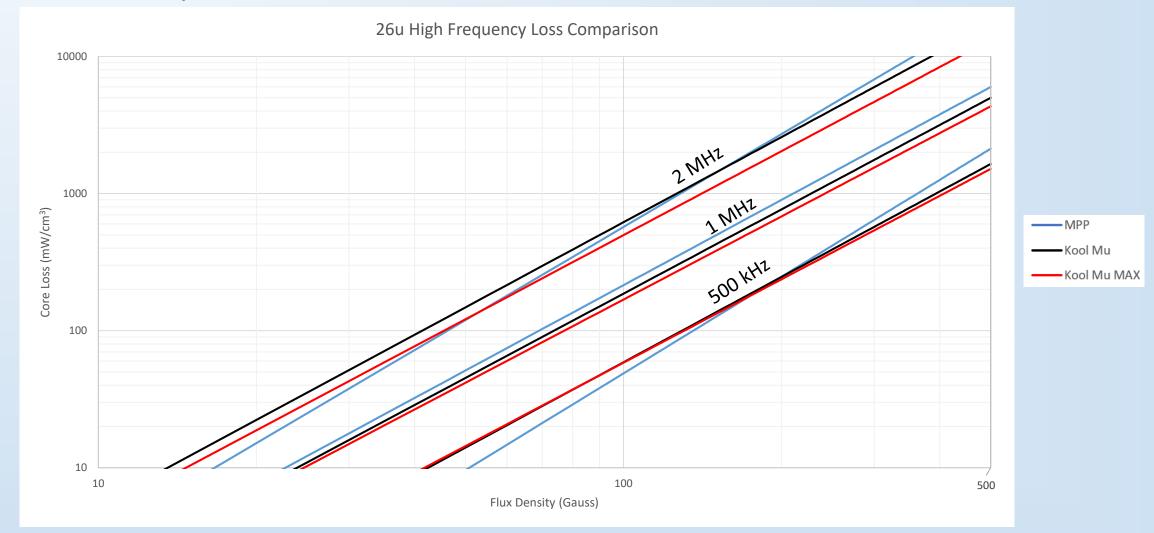
Optimized for High Frequency Losses


HIGH FREQUENCY CONSIDERATIONS

- Focused testing on lower loss materials
 - MPP, Kool Mμ, Kool Mμ MAX


Material (60μ)	DC Bias at x Ls (Oe)		Core Loss (mW/cm³)	
	80%	50%	W _{1000 G, 100 kHz}	
МРР	60	106	450	
Kool Mμ	43	95	550	
Kool Mμ MAX	68	135	500	

- Comparing permeability versus frequency up to 10 MHz for 60μ
- Comparing core loss at 500kHz, 1MHz, 2MHz, and 5MHz (60μ)


High Frequency Considerations – μ vs. Freq 60μ

High Frequency Considerations — Core Loss Data Compilation

High Frequency Considerations — Core Loss Data Compilation

High Frequency Considerations – Summary

Summary Table

60μ	МРР	Kool Mμ	Kool Mμ MAX
Core Loss 1MHz, 100G	150 mW/cc	175 mW/cc	165 mW/cc
Core Loss 1MHz, 250G	1110 mW/cc	1100 mW/cc	1090 mW/cc
Core Loss 5MHz, 35G	215 mW/cc	260 mW/cc	250 mW/cc
Core Loss 5MHz, 70G	1000 mW/cc	1100 mW/cc	1040 mW/cc
μ vs. f 5MHz	-5.4%	-7.6%	-6.5%
μ vs. f 10 MHz	-17.4%	-22.0%	-19.6%

Future Steps

- Further High Frequency Testing and Curve Development
- High Frequency Bulletin
- High Frequency Powder Material

Presentation Conclusions

- Kool Mμ MAX available in 26μ 60μ
 - 19μ, 75μ, 90μ and shapes soon
- Higher perm XFLUX (75μ & 90μ)
- New Shapes Development
 - EQ26 and Round Leg U-Cores
- R&D Development
 - High Flux Improvement and High Frequency Powder Material
- High Frequency Testing
 - μ vs. Frequency Performance: MPP > Kool M μ MAX > Kool M μ
 - Core Loss Performance

QUESTIONS?