

Nanocrystalline, Amorphous and Powdered Amorphous Cores

APEC 2019

Mark Rine
Director Sales and Marketing
Hitachi Metals America, Ltd.

Mark Rine Bio

BS Electrical Engineering – Purdue University MBA – University of Southern Indiana

Companies

Siemens 17 years

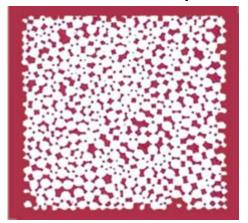
Spectronics, Inc. 7 years

VAC Magnetics USA (Vacuumschmelze GmbH) 9 years

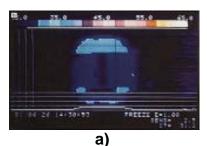
Hitachi Metals USA, Llc 2 years

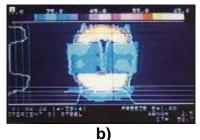
Current Position – Director Sales & Marketing, Hitachi Metals USA. Responsible for NAFTA Nanocrystalline materials and components sales and marketing.

Past responsibilities include – Design Engineering, Manufacturing Engineering, Operations Management, Product Management, International and Domestic Sales and Marketing

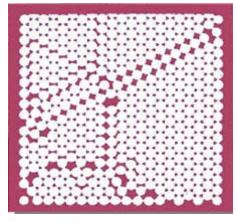

Resides in Dallas, Texas

Languages – English, German


Amorphous Metals - How Are They Unique? Materials Mag!o

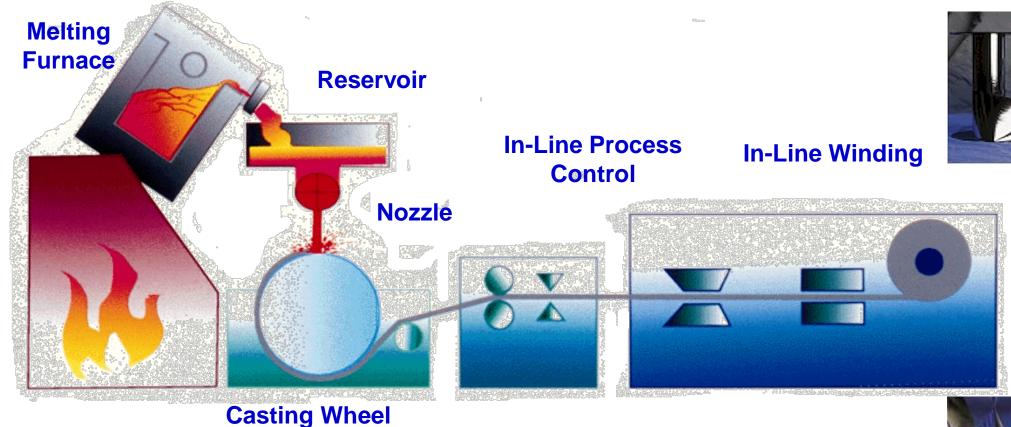

Metglas[®] Is Amorphous

Structure Randomized by Process


- Absence Of Structure Helps Magnetization Process
- Simple Heat Treatment Changes Directional **Properties of Material or Core**

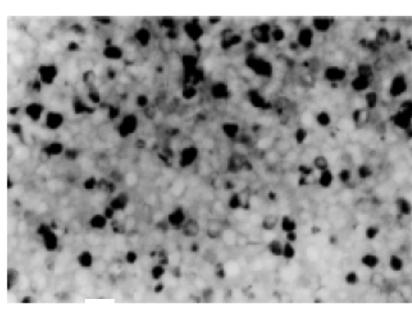
Metallic Solids Are Crystalline

Atomic Arrangement Is Regular & Periodic

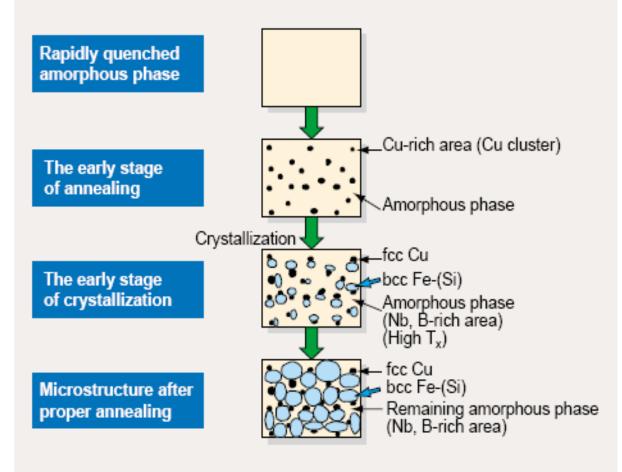

- Structural Anomalies in Atomic Arrangement **Hinder Magnetization Process**
- Structural Arrangement Modified By Thermo-mechanical (Hot Rolling) Grain Orientation

Infrared Photographs of (a) Metglas® Amorphous Metal Transformer / Inductor Core & (b) Grain Oriented Steel **Heat Spectrum Radiated in Grain Oriented Core is significant** compared to Metglas® Amorphous Metal Transformer / Inductor Core due to its significant core losses

Random Structure Gives Enhanced Performance



Unique Process Allows For Enhanced Properties


FINEMET® Soft Magnetic Material Products

j. 3 Microstructure of FINEMET® 20nm

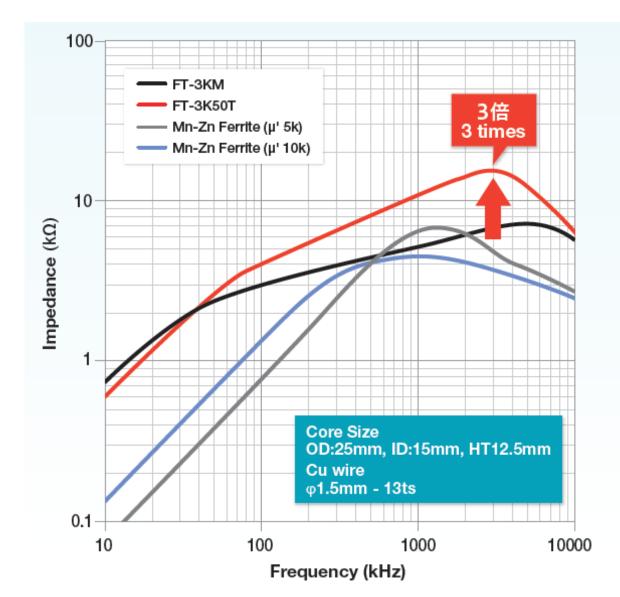
Material Comparison	Chemical Composition	Crystal	Magnetic property	
Crystal		Big	Normal	
Amorphous	Fe, Si, B	None	Good	
Nano-crystal FINEMET®	Fe, Si, B, Cu, Nb	Small (≒10nm)	Excellent	

Key Magnetic Core Design Criteria

Size and Weight

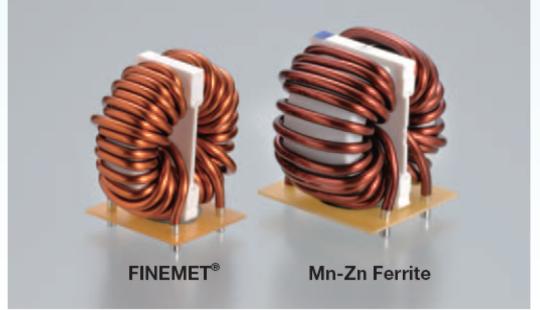
Efficiency (Core Loss)

Solution Cost


FINEMET versus Ferrite Material Properties

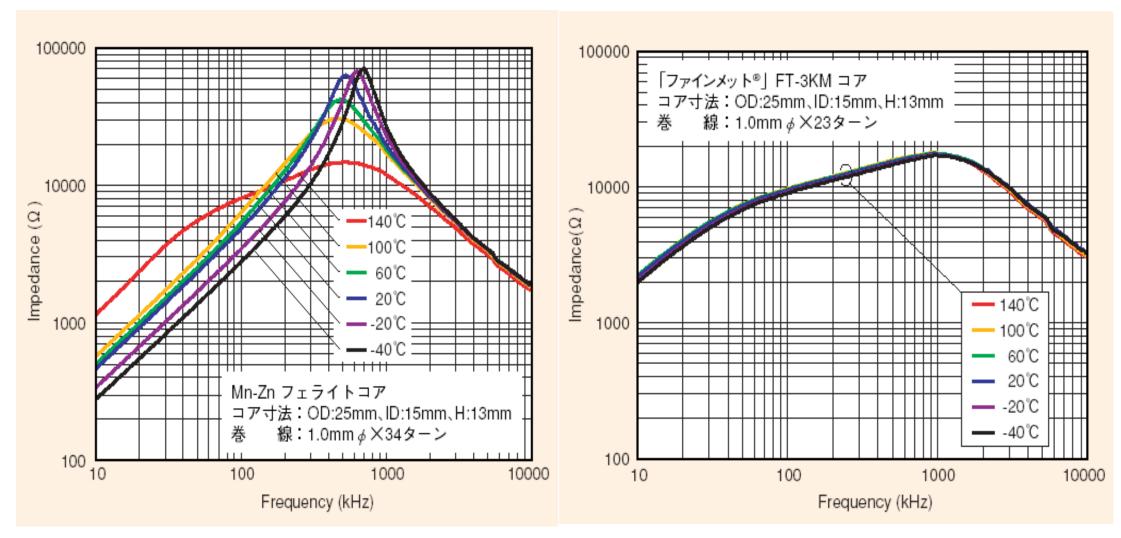
Hitachi Metals Group

Material	FINEMET (Nanocrystalline)	Ferrite
Material Composition	Fe Si (75 / 25%)	MnZn
Permeability (max at 10Khz)	500 to 100,000	15,000
Saturation Induction Bsat	1.2 Tesla	0.4 Tesla
Core Loss W/Kg (100Khz, 0.2T)	20 (FT-3K50T) and 35 (FT-3KL)	120
Curie Temperature	550- 570 deg C	200-300 deg C
Max Continuous Operating Temperature	150 deg C	100 deg C


FT-3K50T Impedance vs Frequency

	FT-3K50T	Mn-Zn
Volume	24cm³ (55% of Mn-Zn)	44cm³
Weight	55g (53% of Mn-Zn)	104g

Spec.; Rated Current 20A, 3mH at 100kHz



FINEMET Temperature Stability vs Ferrite -40 deg C to +140 deg C

MnZn Ferrite CMC

FINEMET CMC

FINEMET Advantages

- Filter Order Reduction (excellent low frequency and high frequency performance)
- Core Size Reduction
- Core weight reduction
- Thin ribbon material offers high frequency higher permeability than competitive nanocrystalline tapes offering same L with less cross sectional area (lower cost, small size / weight)
- Energy efficiency (reduced core loss -transformers, lower DCR-CMC)
- Ease of design (constant u over temperature)
- Mechanical shock / vibration (no chip and crack specification)
- Improved conduction emissions performance can sometimes lead to reduced radiated emissions.

FINEMET Applications

Common Mode Chokes

High frequency attenuation across FCC/CISPR range (150 kHz – 30 MHz)

Size / Weight reduction (high permeability material)

Can be cost reduction (Filter order reduction)

High temp capability / Consistent temp performance

Medium Frequency transformers

High Bsat (1.2) = reduced core size

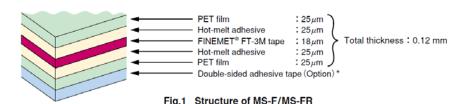
Low core loss compared to ferrite

Effective in 10 kHz – 80 kHz frequency range

Wireless Charging Receiver / Transmitter Core (Qi standard)

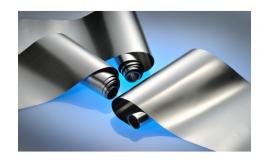
High Bsat (1.2) = less magnetic material required. Thin package profile.

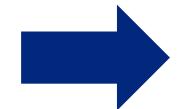
Thin tape construction / packaged in laminated sheet form


Current Transformer

High permeability and low core loss = low amplitude error and low phase angle error so can meet ANSI / IEC 0.2 / 0.5 accuracy standards for energy metering with calibration.

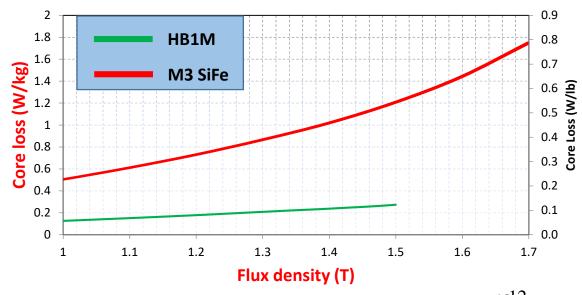
Capable of <1% uncalibrated accuracy for datacenter monitoring.




Option 2

Metglas® Amorphous Metal – 2605HB1M Alloy

Metglas® Amorphous Metal


Soft Magnetic Materials with:

- Extremely Low Core Loss, 35% of M3-Grade GOES core loss in finished cores
- High Permeability
- High Efficiency
- Smaller Size and Weight

Electromagnetic Properties for 2605HB1M Alloy

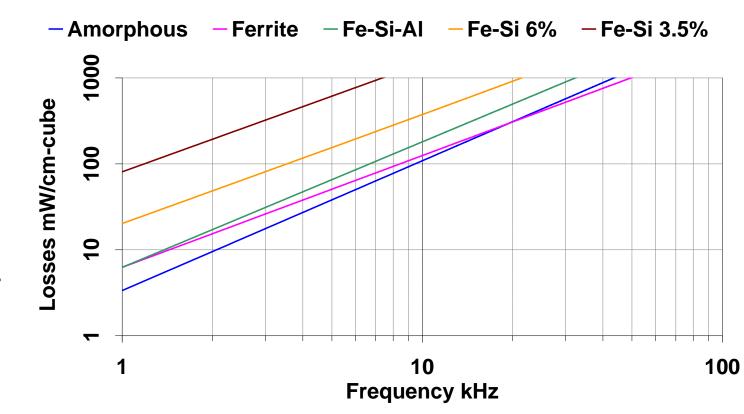
Saturation Induction	Electrical Resistivity	Magnetostriction	Curie Temperature (°C)	
(T)	(μΩm)	(x10-6)		
1.63	1.2	27	364	

POWERLITE® - Amorphous Metal Cut Cores

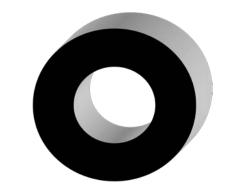
Physical Properties METGLAS Alloy 2605SA1

Ribbon Thickness (µm)	.25
Density (g/cm3)	7.18
Thermal Expansion (ppm/°C)	7.6
Crystallization Temperature (°C)	505
Curie Temperature (°C)	392
Continuous Service Temperature (°C)	150
Tensile Strength (MN/m2)	1k-1.7k
Elastic Modulus (GN/m2)	100-110
Vicker's Hardness (50g load)	860

Application - Differential Mode Chokes / Transformer


- Alternative Energy Power Supplies
- **UPS** system magnetic components
- Electric Vehicle

Medical


- Welding and Plasma cutting

Magnetic Properties METGLAS Powerlite Cores

Saturation Flux Density (Tesla)	1.56
Permeability (depending on gap size)	VARIABLE
Saturation Magnetostriction (ppm)	27
Electrical Resistivity (μΩcm)	137

Microlite Distributed Gap Cores

Unique combination of high saturation flux density & low loss make Microlite the first choice for all energy storage applications while there distributed gap format renders a distinct RFI advantage to conventional air gap cores enabling the designer to achieve both size & system cost reduction

•	Higher Bsat for smaller component size	B _{sat} 1.56 Tesla
•	High permeability	u ~ 250 Less turns, lower Cu loss
•	Extended Bias property	Better retention (%L vs. DC bias)
•	Lower Magnetic Losses	85 W / kg @ 100kHz, 1000 Gauss
•	Higher thermal conductivity	Ensures good heat

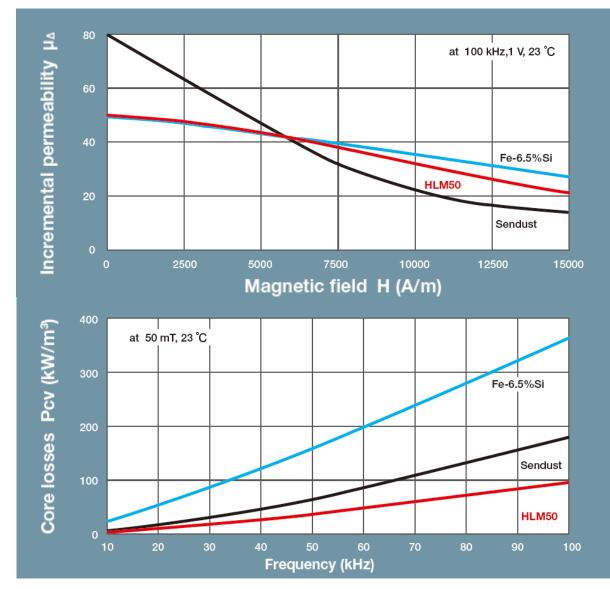
		dissipation
•	Higher Curie temperature	395 C
•	Excellent permeability @ high frequency	95% @ 1000kHz
•	High continuous Service Temperature	150 C

Parameters	Microlite	Iron Powder	MPP	Kool Mu	Ferrite
Bsat	1.56	1.0-1.4	0.75	1.1	0.35
Dormoohility	245/200	75	125	125	Gap
Permeability	245/380	75	125	125	Based
Core Loss (W/kg)	<80/60	680	65	140	<65
% Perm	50	50	50	50	<25
Turns	1	1.8	1.1	1.1	2.1

Applications

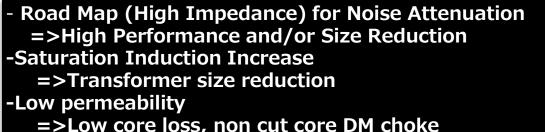
- Output Inductor
- Input Differential Mode Inductor
- Flyback Transformer
- Power Factor Correction Boost Inductor

Powdered Amorphous Cores

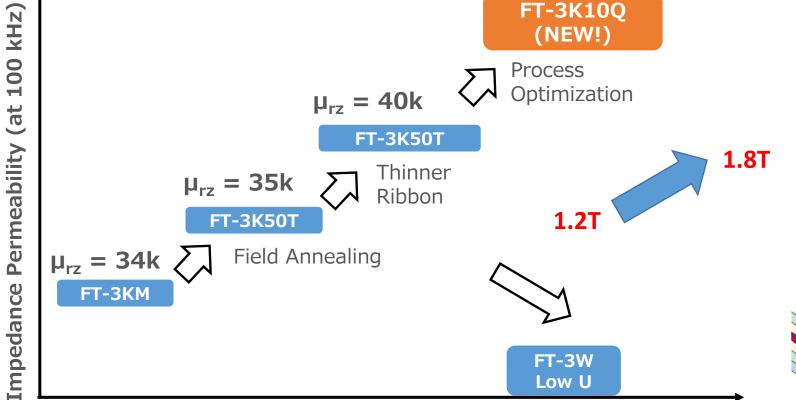

HLM50 series have low loss, high magnetic flux density, and high reliability using our uniquely processed amorphous powder.

This series is suited to coils for higher switching power electronics applications. (Power Factor Correction)

- High Saturation Flux Density Bs
 Higher saturation flux density compared to Sendust powder core.
- Low Core Loss.
 Lower core loss than Sendust powder core.
- Suitable for PFC Circuit and Boost/Buck Converter.
- Three Types of Core are in Production Lineup
 Bare core, cased core and over-coated core can be applied depending on customer requirement.



Tech Roadmap – Electrical and Mechanical



'10

Mechanical Packaging of Amorphous and FINEMET material for applications such as motor stators and wireless charging

R&D

114

112

118

116

Fig.1 Structure of MS-F/MS-FR