High density capacitor-based power converters - application challenges and requirements

> Robert Pilawa-Podgurski University of California, Berkeley pilawa@berkeley.edu

> > March 3rd, 2018

PSMA/PELS Capacitor Workshop

Acknowledgment

Motivation for capacitor-based converter

- Inductor key energy transfer element
 - Large, lossy, difficult to design (see room next door ())
- Capacitor filter input and output voltages
- What if we did the majority of the energy transfer using high density capacitors?
 - Reduce the job demanded of the inductor
 - Inductor size is determined by volt-seconds

Capacitors for energy transfer

 Hybrid switched-capacitor power converters – majority capacitors, but include one or more inductor

48 V to 12 V resonant hybrid SC converter

Input voltage range	36 – 60 V	
Conversion ratio	4:1	
Output current	Up to 40 A	
Power density	Up to 2180 W/in ³	
Peak efficiency	98.9 %	
Full power efficiency	98 % (48-to-12 V)	

Z. Ye, Y. Lei, R.C.N. Pilawa-Podgurski, "A Resonant Switched Capacitor Based 4-to-1 Bus Converter Achieving 2180 W/In³ Power Density and 98.9% Peak Efficiency", APEC 2018 (Tuesday Session, T02)

Comparison with state-of-the-art

Z. Ye, Y. Lei, R.C.N. Pilawa-Podgurski, "A Resonant Switched Capacitor Based 4-to-1 Bus Converter Achieving 2180 W/In³ Power Density and 98.9% Peak Efficiency", APEC 2018 (Tuesday Session, T02)

N. Pallo, T. Foulks, T. Modeer, S. Coday, R.C.N. Pilawa-Podgurski, "Power-Dense Multilevel Inverter Module Using Interleaved GaN-Based Phases for Electric Aircraft Propulsion", APEC 2018 (Thursday Session, T35)

- Loss models
 - Need accurate large signal loss models
 - Datasheet gives small signal parameters
 - Loss models under dc bias
 - Datasheet gives ESR for zero bias condition
- Want highest energy density, and lowest loss
 - Ceramics currently favored for highest power density (but more challenging > 600 V)

For hybrid switched-capacitor power converters, accurate loss models are critical to achieve high efficiency and high power density

Single-phase DC/AC and AC/DC conversion

- High density requirements
 - On-board vehicle chargers
 - Grid integration
 - Storage, solar, etc.
 - Data centers
- Google/IEEE Little Box Challenge stimulated research in high density DC/AC conversion

2 kW, 400 VDC to 240 VAC converter, 213 W/in³

DC-AC Energy Conversion – Buffering Requirement

Instantaneous power mismatch between DC and single-phase AC.

Berk

- Small ripple requires a large capacitance.
- Energy storage is underutilized may be expensive.

DC-AC Energy Conversion – Active Buffer

- Active power buffers increase capacitance utilization.
 - Capacitor voltage is cycled over large swing.

Krein et al., Minimum energy and capacitor requirement for single-phase inverters and rectifiers using a ripple port, IEEE TPELS, Nov, 2012

Loss measurements at low frequency

- Experimental test setup developed to measure loss and energy storage over wide voltage swing.
 - Voltage swing and bias are independently adjustable.

Loss measurements at low frequency

 Currently available products show a clear tradeoff between quality factor/efficiency and energy density.

C. Barth, I. Moon, Y. Lei, S. Qin and R.C.N. Pilawa-Podgurski "Experimental Evaluation of Capacitors for Power Buffering in Single-Phase Power Converters," ECCE 2015

Experimental Results

Capacitor #	Description	Manufacturer PN	Density mJ/mm3	Q factor	Efficiency
1	Electrolytic, 50V, 2700uF	EPCOS(TDK) - B41858C6278M	8.92E-02	566	98.9%
2	Electrolytic, 100V, 680uF	EPCOS(TDK) - B41858C9687M	1.35E-01	756	99.2%
3	Electrolytic, 250V, 100uF	EPCOS (TDK) - B43888F2107M	3.56E-01	403	98.5%
4	Electrolytic, 450V, 6.8uF	EPCOS (TDK) - B43890A5685M	4.89E-01	75	92.3%
5	Film (PEN), 50V, 1uF	Kernet - LDECD4100KA0N00	9.47E-03	1189	99.5%
6	Film (PEN), 100V, 0.068uF	Panasonic - ECW-U1683KC9	9.21E-03	639	99.0%
7	Film (PEN) 100V, 1uF	Kernet - LDEEE4100KA0N00	2.02E-02	946	99.3%
8	Film (PEN), 250V, 0.068 uF	Kernet - LDEID2680JA5N00	3.15E-02	413	98.5%
9	Film (PEN) 250V, 3.3uF	Nichicon - QAK2E335KTP	2.19E-02	2458	99.7%
10	Film (PEN), 250V, 1uF	Panasonic - ECW-U2105KCZ	4.04E-02	445	98.6%
11	Film (PEN), 400V, 0.1uF	Kernet - LDEME3100JA5N00	3.45E-02	316	98.0%
12	Film (PEN), 450V, 1.5uF	Panasonic - ECQ-E2W155KH	4.46E-02	2115	99.7%
13	Film (PP), 100V, 10uF	Cornell Dubilier - 935C1W10K-F	4.10E-03	6887	99.9%
14	Film (PP), 300V, 60uF	EPCOS (TDK) - B32678G3606K	2.73E-02	15875	99.9%
15	Film (PP), 450V, 4.7uF	Panasonic - ECW-FD2W475J	7.84E-02	8728	99.9%
16	X5R, 50V, 4.7uF	TDK - C2012X5R1H475K125AB	4.03E-01	182	96.7%
17	X5R, 50V, 10uF	Kernet - C1210C106K5PACTU	1.91E-01	90	93.5%
18	X5R, 100V, 4.7 uF	TDK - C3216Y5V1H225Z/1.15	3.46E-01	106	94.4%
19	X5R, 100V, 1uF	TDK - C3216X5R2A105K160AA	2.31E-01	120	95.0%
20	X6S, 50V, 2.2uF	TDK - C2012X6S1H225K085AC	3.50E-01	102	94.2%
21	X6S, 50V, 10uF	TDK - C3225X6S1H106K250AC	2.68E-01	91	93.5%
22	X6S, 50V, 4.7uF	TDK - C2012X6S1H475K125AC	3.58E-01	198	96.9%
23	X6S, 2.2uF, 450V	TDK - C5750X6S2W225M250KA	1.03E+00	353	98.3%
24	X7R, 50V, 2.2uF	TDK - C2012X7R1H225K125AC	2.28E-01	125	95.2%
25	X7R, 100V, 4.7uF	TDK - CKG45NX7R2A475M500JJ	1.86E-01	118	95.0%
26	X7R, 100V, 1uF	TDK - C3216X7R2A105K160AA	3.14E-01	107	94.5%
27	X7R, 250V, 1uF	TDK - C5750X7R2E105K230KA	1.77E-01	87	93.3%
28	X7S, 100V, 4.7uF	TDK - 12061Z475KAT2A	5.59E-01	171	96.5%
29	X7T, 250V, 3.3uF	TDK - CKG57NX7T2E335M500JH	2.79E-01	363	98.3%
30	X7T, 250V, 2.2uF	TDK - CGA9P3X7T2E225M250KE	4.82E-01	285	97.8%
31	X7T, 450 V, 2.2 uF	TDK - CKG57NX7T2W225M500JH	5.69E-01	346	98.2%
32	X7T, 450V, 2.2uF	TDK - CKG57NX7T2W225M500JJ	5.08E-01	327	98.1%
33	Y5V, 25V, 4.7uF	TDK - C2012Y5V1E475Z	3.75E-02	343	98.2%
34	Y5V, 50V, 2.2uF	TDK - C3216Y5V1H225Z/1.15	6.27E-02	541	98.9%

Test data from paper appendix.

Can we employ the same technique to measure high (>100's of kHz) frequency losses?

Very difficult to achieve high amplitude, high frequency, high resolution *electrical measurements* of sufficient quality

Large signal loss parameters at high frequency Berkeley

Currently exploring calorimetric methods

Temperature Chamber

DC bias voltage	Power Loss
0 V	2.67 W
100 V	2.85 W
200 V	3.25 W
400 W	4.35 W

Packaging and reliability concerns

- Many distributed capacitors throughout the circuit, all near transistors
 - Need small form factors, small values are OK
 - Low inductance packages extremely important
 - Placed near significant heat sources
- Mechanical concerns
 - Heatsink pressure, clearances
 - Soft termination appears helpful
 - Piezoelectric effects observed

Advanced converter/capacitor development

ARPA-E funded 6.6 kW bi-directional EV charger (2018)

Conclusions

- Capacitor-based power converters
 - Ready for prime time
 - Show great promise to achieve superior efficiency and power density compared to inductor based designs
- Need better models/data
 - Larger signal loss parameters
 - Impact of DC bias
- Need even better capacitors
 - Energy density
 - Quality factor
 - Reliability

- NASA
- Google
- National Science Foundation and the Center for Power Optimization of Electro-thermal Systems (POETS)