

High Power Converter – 150 W Buck-Boost in Detail

APEC 2019 in Anaheim Capacitor Workshop PSMA

Andreas Nadler Field Application Engineer

Short Introduction of Today's Presenter

Andreas Nadler

Field Application Engineer EMC & Inductive Solutions

Background:

- Many years of experience as hardware engineer in the field of switched-mode power supplies, EMC and analogue circuit technology
- Since 2015 working as Field Application Engineer

+49 7942945 4098

- andreas.nadler@we-online.com
- www.we-online.com

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Agenda

- What is the Purpose?
- Component Selection
- Layout Analysis & EMC Properties
- Efficiency and Temperature Measurement
- Conclusion

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

What is the Purpose?

- The voltage of a battery with 5 lithium ion cells in series should be regulated to stable 18 V_{DC}
- The voltage of a cell varies ~ 3.0 V to 4.2 V

- 5 cells in series gives an input voltage range of 15 V to 21 V
- Continuous current of 5 A is required
- The DC/DC converter is to be designed for a input voltage range from 14 V to 24 V

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Buck-Boost with LT3790 & external MOSFETs

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Buck-Boost with LT3790 & external MOSFETs

Power Stage with Iow ESR/ESL Capacitors

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Critical $\Delta I/\Delta t$ Loops & high $\Delta V/\Delta t$ Nodes

Requirements for the design:

- Long I/O connection cables (1 m)
- No shielding possible
- Emission Limits CISPR32 Class B
- Efficiency over 95% @ 100 W

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Simulation of the I/O Filter Components

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Simulation of the I/O Filter Components in LTspice

All components are simulated with parasitic elements:

Losses on the output filter:

 $I^2 * R_{dc} = 5.5 A^2 * 30 m\Omega = 907 mW$ $I^2 * R_{dc} = 7 A^2 * 18.4 m\Omega = 902 mW$ Losses on the input filter:

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Calculation of the input capacitors (REDEXPERT)

Calculation of input capacitors for max. allowed AC voltage

$$C_{\rm in} \ge \frac{D \times (1 - D) \times I_{outmax}}{\Delta V_{in\,pp} \times f_{sw}}$$
 $C_{\rm in} \ge \frac{0.78 \times (1 - 0.78) \times 5.5A}{100 \, mVpp \, \times 400 \, kHz} = 21 \, \mu F$

Selected : 6 x 4.7 μF / 50 V / X7R = 28.2 μF - 20% DC-Bias = <u>23 μF</u>

Calculation of the input capacitors (REDEXPERT)

Order Code	Series	E	Size 🗐	In目	Spec	Ту 目	Description	E	С	E	V _R E		R _{iso} 目	ESR @400 kHz 目	ΔC(V _{DC-Bias}) @24.0 V	DF 目
◇ 885012209048	WCAP-CS	GP	1210		1	X7R	X7R1210475K050DFCT10000		4.70	μF	50.0	v	> 20.0 MΩ	2 .53 mΩ	-21.8 %	5.0 %

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Filter Damping to fulfil Middlebrooks Criteria

Calculation of the Aluminum Polymer Capacitor

 $C_{damp} \sim 4 \times C_{inMLCC} = 4 \times 23 \ \mu F = 92 \ \mu F$

Selected: 68 μF => WCAP-PSLC with 35 V

■ Details for DC/DC filter design, stability etc. → Wurth Electronic AppNote ANP044

Calculation of the Output Capacitors

Maximum coil current Δl in Buck Mode = 1.6 A

$$C_{OUT} \ge \frac{\Delta I_L}{8 * V_{OUT \, ripple} * f_{SW}}$$
 $C_{OUT} \ge \frac{1.6 \, A}{8 * 20 mV * 400 \, kHz} = 25 \, \mu F$

- Selected:
 - 6 x 4.7 μF / 50 V / X7R
 - 28.2 μF 15% DC-Bias = 24 μF
- Plus:
 - Aluminum Polymer Capacitor for transient response
 - WCAP-PSLC 220 µF / 25 V

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Analysis of the Layout - TOP

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Analysis of the Layout - BOTTOM & Inner Layers

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

EMC - Conducted Emission Test

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

EMC - Radiated Emission Test

- Radiated emission 30 MHz 450 MHz
- Buck Mode 100 W

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

© All rights reserved by Wurth Electronics, also in the event of industrial property rights. All rights of disposal such as copying and redistribution rights with us.

Temperature of the PCB & Components

TOP side

BOTTOM side

Efficiency @ 100W \rightarrow Buck Mode 96,5% & Boost Mode 95,6%

2019 | eiCap / eiRis | Public | APEC 2019 Capacitor Workshop PSMA

Questions?