

Everything you wanted to know about high voltage film capacitors, but were afraid to ask

- How do high voltage film capacitors (HVFCs) compare with other capacitor technologies?
- What films are typically used in HVFCs for power electronics applications?
- What are the most common applications for high voltage film capacitors?
- How do HVFCs compare with aluminum electrolytics
- What are the primary application considerations for HVFCs
- What are some of HVFC design options for meeting customer requirements

Common Capacitor Film Dielectrics

Material	Dielectric Constant (K)	Dissipation Factor , 1 KHz, 25°C	Maximum Dielectric Withstand (V/μm)	Max Operating Temperature (°C)
PET (Polyester)	3.2	<0.5%	<300	105-125
PEN	3.0	<1.0%	<270	105-125
Polypropylene	2.2	<0.1%	<350	85-105
PPS	3.0	<0.6%	<250	125-150
Polycarbonate	2.9	<0.3%	<275	125-150

Polypropylene is the most widely used film dielectric for Power Electronics Applications

Advantages of Polypropylene

- High voltage breakdown strength
- Wide voltage range (50 to >10,000 Vdc)
- Very low loss, low DF (Dissipation Factor)
- High ripple current capability
- Good for AC or DC applications with ripple
- Dry or impregnated designs

Disadvantages of Polypropylene

- Lower dielectric constant than other capacitor film dielectrics.
- Lowest high-temperature capability.

Typical Applications for polypropylene capacitors in Power Electronics

- High frequency Coupling / Decoupling (DC)
- High pulse operation (DC)
- Snubber for IGBTs (DC)
- DC Link (DC with ripple)
- Input / Output filtering (AC or DC)

Capacitor Design example using Inverter DC Link

DC Link Application Examples

High Voltage DC Film Capacitors : DC Link

Capacitor Design example using Inverter DC Link

- Large inverters for grid-tie and commercial / industrial off-grid applications :
 - 10's of KW to MW
- IGBT switching frequencies:
 - several KHz to 50 KHz.
- Typical DC Link CV:
 - Voltage Range: 600-1500 Vdc
 - DC Link Capacitance: 10 µF to several mF

High Voltage DC Film Capacitors : DC Link

The two principal capacitor technologies for Power DC Link:

	Aluminum Electrolytic	Polypropylene Film
Characteristic	And the sector of the sector o	
Capacitance Range (µF)	10 - 10^6	10-3000
Rated Voltage Range (Vdc)	6.3 - 600	600-1500
*Energy Density (Joules/Liter)	100-800	200-250

*Comparison @ 450 Vdc

High Voltage DC Film Capacitors : DC Link

Cost Comparison: Aluminum Electrolytic versus PP Film:

	\$ Per Joule	\$ Per Amp
Film	\$0.20 - 0.50	\$1
Lytic	\$0.05 – 0.10	\$3

High Voltage DC Film Capacitors: DC Link Basic Construction of a metallized Polypropylene Film DC Link Cap

Metalized Electrodes

"Metalized Film Capacitor"

Self Healing Capability

Capacitor Design Options: Voltage Rating

Need higher voltage?

- Increase dielectric thickness (V/μm)
- Metallization

rating

- Lighter metallization results in higher voltage rating for a given dielectric thickness
- Metallized patterns such as segmented or graded metallization can improve voltage

Capacitor Design Options: Capacitance

Need more capacitance?

- Increase plate area, winding size
- Recommend capacitors in parallel
- Parallel-connect windings internally

1		
	ユ 	
L	ユ て	

Capacitor Design Options: Ripple Current

Need Higher Ripple Current?

- Minimize ESR
 - Lower ohms per square metallization
 - Increase diameter of winding
 - Reduce capacitor height
- Improve heat dissipation
 - Increase capacitor surface area
 - Recommend air flow or cooling if needed

Capacitor Design Options: Life Expectancy

Need Longer Life?

- Thermal modeling
 - Thermal couple insertion
 - COMSOL thermal modeling
- Life Calculator
 - Applied voltage
 - Ambient temperature
 - Calculate hotspot
 - Airflow

Cornell Dubilier Electronics - Energizing Ideas - www.cde.com

Capacitor Design Options: Reliability

- Need high reliability?
 - Base film selection
 - Metallization
 - Reliable self healing
 - Capacitor Processing (Key processes to control)

Capacitor Design Options: Inductance

Need Lower Inductance?

- Shorter capacitor
- Geometry of leads and lead placement
- Two windings in parallel versus one

Capacitor Design Options: Size and Packaging

- Size Constraints
 - Energy Density
 - Form Factor
 - Cylindrical or Prismatic
- Mounting Preference
 - Bus Mount, Board Mount

Scott Franco Director of Market Development at Cornell Dubilier Electronics

Bio for Scott Franco

- Bachelor of Science Degree in Physics from UMass, 1989.
- Began working at Cornell Dubilier in 1989 as AC and DC Film Capacitor Applications and Design Engineer
- Received MBA in 1997 from Bryant College.
- Transitioned from engineering to product management and sales management roles.
- Currently serves the company as Director of Market Development