

Everything you wanted to know about failure modes in high voltage film caps but were afraid to ask.

- What are some common causes for failure in HVFCs?
- What is a typical process for analyzing failure modes of HVFCs?
- What are the visual indications and causes of specific failure modes in HVFCs?

What are some common causes for failure in HVFCs?

Misapplication and Environmental Causes

- Va>Vr: Overvoltage
- Ta>Tr: Ambient temperature too high
- AC voltage applied to DC rated part
- I RMS: Ripple current exceeds capability
- dV/dt: Too high pulse current
- Moisture

Poor Design for Intended Application

- Too thin dielectric for Vr
- Wrong metallization type for application
 - Zinc, aluminum, alloy?
 - Too high or low ohms per square metallization
 - Wrong metallization pattern for application
- For AC application, part not designed to prevent or inhibit corona
- Design not proven with life test

Poor Processing

- Loose winding
- No burn-off
- Poor endspray penetration
- Thin endspray
- Poor end connection
 - Poor solder or weld
- Not cleared properly
- Assembled incorrectly

Inferior Materials

- Inferior base film
 - Degree of crystallinity
 - Defects per unit area
 - Substitute quality source for low cost without proving design or control of supply.
- Inferior metallization
 - Poor adhesion
 - Defects in metallized layer

Failure Modes of High Voltage Film Capacitors Typical Process for Analyzing Failure Modes in HVFCs

What are the visual indications and causes of specific failure modes in HVFCs?

First: This is what a good metallized polypropylene cap winding looks like.

Segmented Film

Non-Segmented Film

Corona

- Typical visual indications
 - Loss of metallization (pitting) at metal edge boundaries where field strength is highest and where air gaps may exist.
 - Typical causes
 - Vac applied exceeds rated.
 - Loose winding, air gaps

Excessive clearing

- Typical visual indications
 - Loss of metal in cleared areas where dielectric has been compromised.
 - Typical causes
 - Vdc or Vac applied exceeds rating
 - Application temperature exceeds rated temperature
 - End of life (dielectric aging)

Moisture

- Typical visual indications
 - Large areas of metal corrosion, discoloration without dielectric failure.
 - Typical causes
 - Excessive humidity

Peak Current Failure

- Typical visual indications
 - Metallization at end connection deteriorates due to pulsed current
 - Typical causes
 - dV/dt exceeds rating

Thermal Runaway

- Typical visual indications
 - Massive charring and melting of plastic film
 - Typical causes
 - Capacitor voltage or temperature ratings exceeded for extended periods
 - Cascading failure modes

High Voltage Film Capacitors

Scott Franco Director of Market Development at Cornell Dubilier Electronics

Bio for Scott Franco

- Bachelor of Science Degree in Physics from UMass, 1989.
- Began working at Cornell Dubilier in 1989 as AC and DC Film Capacitor Applications and Design Engineer
- Received MBA in 1997 from Bryant College.
- Transitioned from engineering to product management and sales management roles.
- Currently serves the company as Director of Market Development