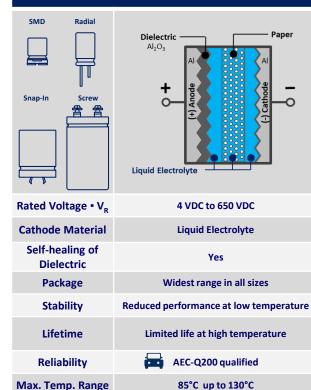
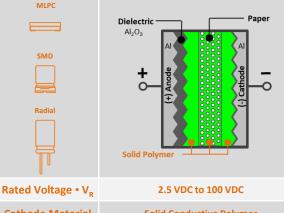


E-Cap technologies When things get rough...

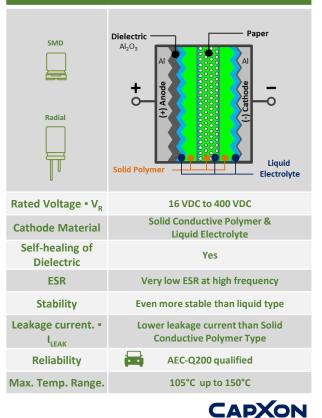

CapXon - Manufacturer for professional

aluminum electrolytic, conductive polymer and hybrid electrolytic capacitors as well as etched and formed aluminum foil

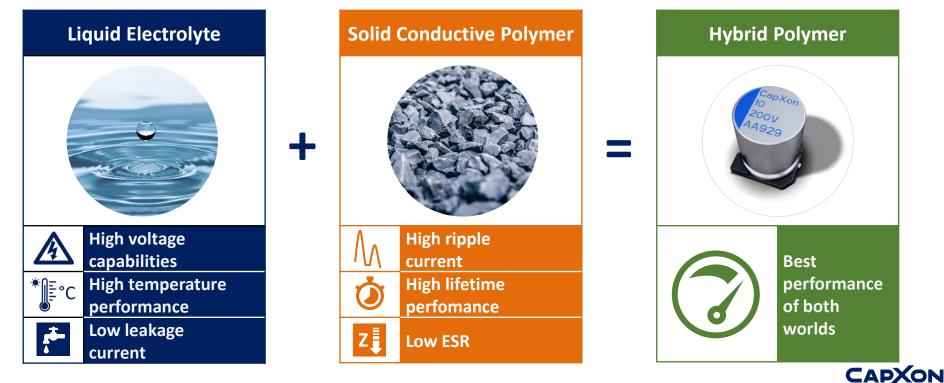
Al E-Cap Technologies



Aluminum Electrolytic


Solid Conductive Polymer

SMD

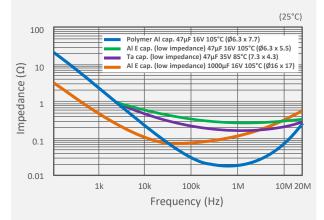


Cathode Material Solid Conductive Polymer Self-healing of No Dielectric **Ultra-low ESR at high frequency** ESR **Stability** Stable for low and high temperature Lifetime Very stable and long life - no dry out Reliability **Only internal standard gualification** 85°C up to 125°C Max. Temp. Range

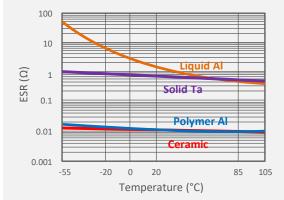
Hybrid Conductive Polymer

As a mix of the two worlds, the hybrid polymer technology offers the best performance of highcapacity storage components

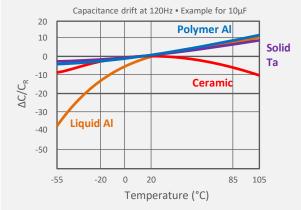
Polymer e-caps and other cap technologies



Solid Conductive Polymer Cap.


Al E Cap. Tantalum Cap.

. MLCC


Impedance vs. Frequency

ESR vs. Temperature

Low impedance at high frequency Allows large ripple current Discharges quickly Coupling to remove the ripple in the circuit, pulse, electrostatic and other various kinds of noise

ESR hardly changes with temperature

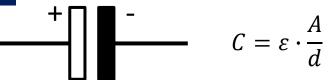
Stable capacitance in a wide temp. range Positive temp. coefficient Extremely stable at low temp.

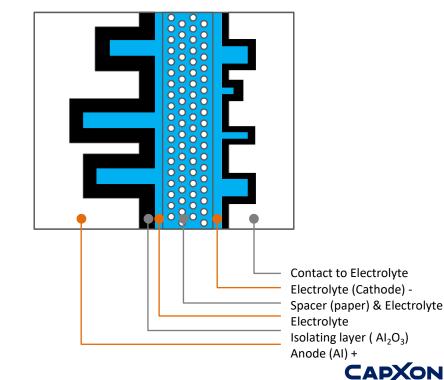
CAPXON

Al E-Cap Technology – it is still a parallel plate

Major factors for capacitance:

Surface Area A:

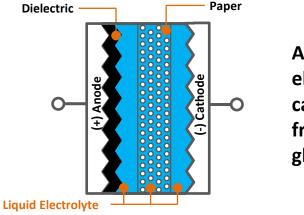

 Is enlarged by roughening of anode foil (~ 30 – 140 times)


Distance d:

Very thin Al₂O₃ oxide layer

Electrolyte / Electrode:

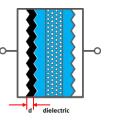
 Fluid second plate of the capacitor (cathode) that contacts the dielectric layer / oxide on top of the roughened anode foil



Al E-Cap Technology

How to increase capacitance?

- Anode of the capacitor
- Increase the surface by etching of anode foil
- Very thin layer of dielectric forming Al₂O₃ layer
- Fill the rough surface impregnating electrolyte
- Contact cathode foil



A new electrolytic capacitor is like a fresh and full glass of beer ;-)

CAPXON

Model of a simple aluminum electrolytic capacitor

 $C = \varepsilon \cdot \frac{A}{d}$

When things get rough?

Electrical Stress A

- Applied Voltage
- Surge Stress
- Applied Ripple
- Charge / Discharge Speed

>> Temperatue is the major factor for aging of e-caps

Vibration

Mechanical Stress (+)

• G-Shock

Relative

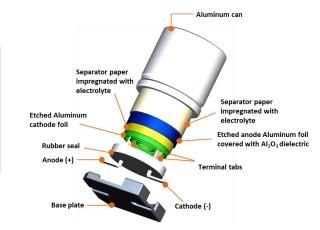
Ambient Stress

Temperature

Humidity

Importance of ESR

The ESR* is influenced by...


*Equivalent Series Resistance

Ohmic losses

Dielectric losses

tan δ

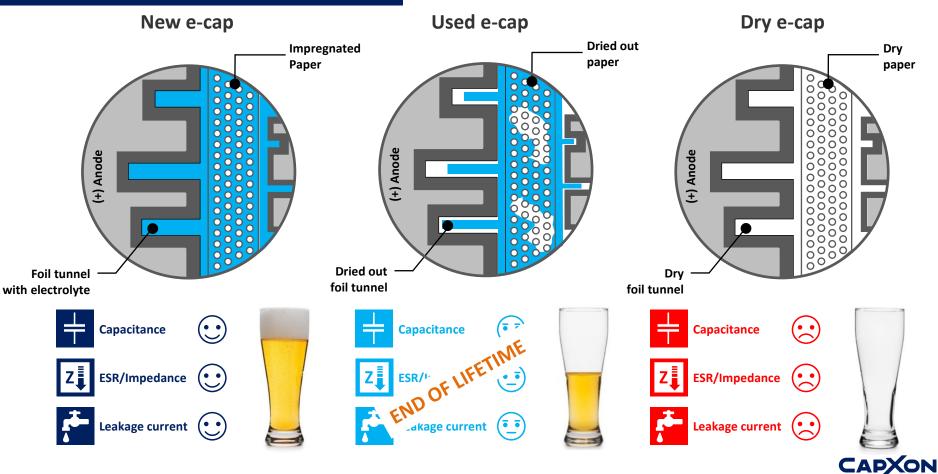
- the contact resistances of the electrode contact
- the connection to the external connections
- the connections themselves

Problem of Power Dissipation

Example:

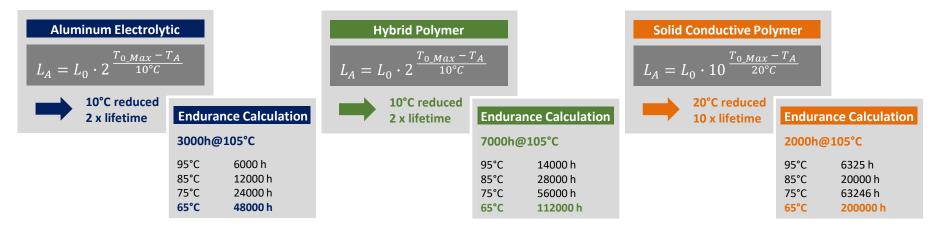
ESR = 800m Ω and I_{AC} at 120Hz = 3.5A

This results in a power loss of $P = (3.5A)^2 \cdot 800m\Omega = 9.8W$


How does it smell when the cap is cooking?

5

Aging of Al E-Cap capacitors



E-Cap Technology Comparison

7

Case	V _R (V)	C _R (μF)	Size ø DxL (mm)	Technology	Part Number	ESR (mΩ, 100kHz)	Leakage current (µA) after 2 min	Maximum permissible ripple current (mA, RMS)	Temperature Range	Endurance (h)
	16	270	8 x 11.5	Liquid	GF271M016F115ETD	120	43	600	-40°C to +105°C	3000
			8 x 9	Hybrid	AS271M016F090PTD	26	43.2	2000	-55°C to +105°C	7000
			8 x 11.5	Polymer	PL271M016F115PTD	9	864	5600	-55°C to +105°C	2000

Lo... Endurance value per datasheet

- La... Expected life within application
- To... Max. temp. according datasheet
- T_A... Application temperature

Example: CapXon - KL Series / Al E-Eap Radial THT with 105°C max.:

Lifetime Test		
Fundamenten	Test	5 000 hours
Endurance 105°C	$\Delta C/C_R$	$\leq \pm 20\%$ of initial measured value
(V _R & I _R applied)	tanδ	≤ 200% of initial specified value
	Leak	\leq the initial specified value

Aging by stress in application will result in:

- Capacitance drop
- ESR increase
- DF increase
- I_{leak} increase

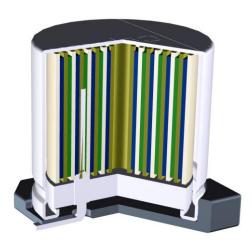
Endurance describes a referenced spec. change window and not a failure mode / defect after time!

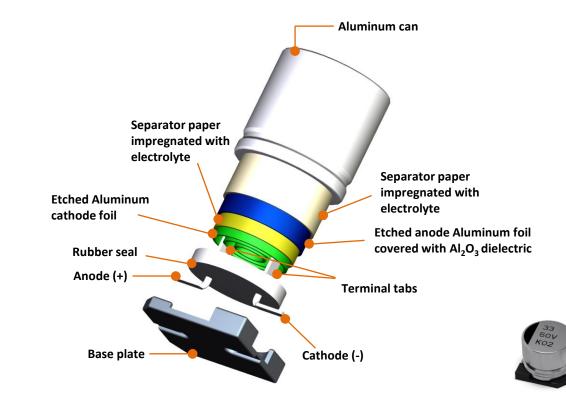
Example: CapXon - KL Series / Al E-Eap Radial THT with 105°C max.:

Lifetime Test		
Fradimenses	Test	5 000 hours
Endurance 105°C	$\Delta C/C_R$	$\leq \pm 20\%$ of initial measured value
(V _R & I _R applied)	tanδ	≤ 200% of initial specified value
	Leak	≤ the initial specified value

Manufacturer describes the spec change...

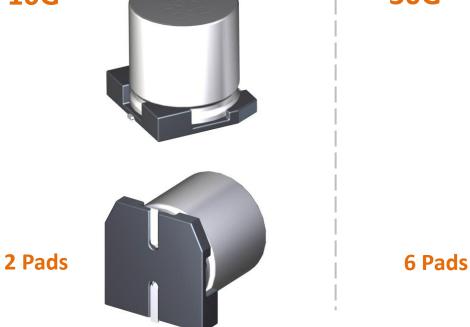
But design engineers define the EOL / application stability criterias!


If capacitance margin is higher vs. manufacturer spec. >> you prolong the expected life

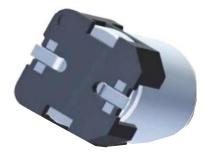

If capacitance margin is lower vs. manufacturer spec. >> you shorten the expected life

E-Caps – Construction

SMD type


CAPXON

E-Cap Technology


SMD type - Standard vs. Vibration Proof (VP)

10G

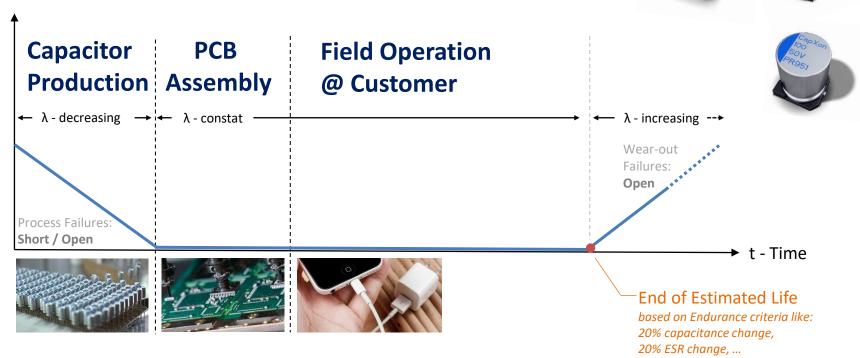
30G – 50G

Al E-Caps Main Failure Modes

• **Open circuit** – *Wear-out Failure Mechanism*

The typical failure mechanism of polymer capacitor is caused from the deterioration of conductive polymer, as polymer chain conductivity drops at aging it causes:

- >> C capacitance decrease
 >> ESR + ESR increase
 >> DE increase
- >> DF[†]- DF increase
- Short circuit Accidental Failure Mode


Rarely caused and worst case situation, can happen due to breakdown of dielectric Al_2O_3 layer by exceeding allowed load or applying overstress like:

- Electrical stress (over-voltage or exssive applied current)
- Thermal stress
- Mechanical Stress

Al E-Caps Main Failure Modes

 λ - Failure Rate

Is AEC-Q200 the answer to all your problems for vibration and high temp.?

>> From my perspective it is just a partial yes, but you need to dig deeper!

- Be aware it covers a proper variety of tests, but does not tell you anything about production stability and monitoring of such continuous quality
- There is no definition of Al e-caps tesing for vibration levels above 5G
- Temperature limits are set by manufacturer

Customer needs to closely read what was really tested and to which extend!!!

China Office - Shenzhen Fengbin Industrial Park A102, Tangwei Community, Fenghuang street, Guangming District, (No. 4132 Songbai Rd.) Shenzhen 518106 - China T +86-755-2717-7888

sales@capxon.com.cn

Europe Office

Schwalbenweg 11 Pfullingen 72793 • Germany T +49-7121-1452700 sales@capxon-europe.com

Taiwan Office

5F, No. 157, Sec 2, Datong Road, Sec. 2, XiZhi District New Taipei City 22183 = Taiwan R.O.C. T +886-2-5592-4699 sales@capxon-taiwan.com South Korea Office RM309, Metrokhan, 239 Pyeongchon-daero, Dongan-gu, Anyang-si, Gyeonggi-do = Korea, 14047 sales@capxon-korea.com

Singapore Office 51 Goldhill Plaza #07-10/11 Singapore 308900 T +65-3-1572870 sales@capxon-asia.com USA Office

New York +1-607-846-4546 sales@capxon-usa.com

capxongroup.com