

DC-Link Capacitor Characterization with the MFIA Impedance Analyzer

Ronald Alexander, Technical Sales

Presentation Overview

- Introduction to Zurich Instruments
- Introduction to the MFIA
- Case study: Measurement of ESR and ESL of a DC-Link Capacitor
- **What does the DC-Link capacitor do?**
- **Why is the ESR of interest?**
- **Why is the ESL of interest?**
- **Details of Device Under Test (DUT)**
- **Custom Fixture Details**

Zurich Instruments

Mission

Provide best-in-class dynamic-signal instruments for advanced R&D labs.

Zurich Instruments What do we do?

Adequate speed

- P High sensitivity
- **Low noise**
- P High resolution

Software

- **Efficient workflows**
- **Functionality & features**
- **UI & APIs**
- Value added over time

Instruments

Quantum control systems

0- 0- 0- 0- 00 0000

0- 0- 0- 00 0000

100

- Isock-in amplifiers
- Boxcar averagers
- Impedance analyzers

Zurich Instruments

Company profile

- P Headquarters in Zurich, Switzerland
- P Founded in 2008, 100+ people, 25+ nations
- Owned by Rohde & Schwarz technology group since 1st July 2021
- Offices in China, USA, Germany, Japan, Korea, France
- Partners in Australia, India, Poland, Russia
- \rightarrow Run by scientists for scientists

Introduction to the MFIA

Impedance Analyzer & Precision LCR Meter from 1 mHz to 5 MHz

- Innovative architecture allows wider measurement range and faster measurement speeds
- Matches or surpasses accuracy and precision of traditional impedance analyzers
- **LabOne**[®] software provides UI & API suite
- Out of the box experience: start measurements immediately thanks to fast warm up and included MFITF Fixture

Key MFIA features

- **C** Low Frequency (start sweeping from 1 mHz)
- **P** High impedance (measure to $1 T\Omega$)
- Fast capacitance measurements in LCR Mode (10 us at 1 MHz)
- LabOne[®] toolset (Sweeper, Plotter, DAQ, Spectrum Analyzer, Scope...)
- P APIs (C, MATLAB[®], LabVIEW[®], Python, .NET)

MFIA Software

LabOne runs the MFIA

- → Software toolset
- → Impedance Analyzer
- \rightarrow Sweeper
- \rightarrow Plotter
- \rightarrow DAQ
- \rightarrow Scope
- → Spectrum analyzer
- \rightarrow Many more

Clear Accuracy Chart

Ensures positive user expectations

- Quickly illustrate the following key features:
- **Wide frequency range**
- **Wide impedance range**
- Image: Widest basic accuracy range
- I Lowest frequency 1 mHz
- $\fbox{ Highest Impedance 1 T\Omega}$
- **Compare to competitors**
- **Accuracy improves with user compensation**

Case Study: ESR & ESL of a DC-Link Capacitor What does the DC-Link capacitor do?

- **Rev element in power conversion systems**
- Sits between DC source & switching circuit; minimizes voltage dips
- **Multiple applications, including EVs**

Inverter

Case Study: ESR & ESL of a DC-Link Capacitor Why are the ESR and ESL of interest?

- ESR causes power dissipation and thus heat, not ideal for EVs
- **Low ESR is desired**

- **ESL** can be considered parasitic inductance
- Energy stored in parasitic inductance causes overshoot during switching

Case Study 1: ESR & ESL of a DC-Link Capacitor Details of Device Under Test

- $\ensuremath{\mathbb{P}}$ DUT: TDK EPCOS B25655PXXX DC-Link XXX μF
- \boxdot 120 μF version used in this demo
- Image: Datasheet gives ESR 0.8 m Ω , ESL 15 nH

Ordering code	CR	V _{RDC}	I _{max} 1	L _{self}	Rs	Î	IS	tanδ	Dimensions L x W x H	Weight	Fig.	
	μF	V	A	nH	mΩ	kA	kA	120 Hz	mm	kg		
B25655P9127K151 ²⁾	120	900	120	15	0.8	3.5	11.0	5 · 10 ⁻⁴	154 x 72 x 50	0.8	5	

Case Study 1: ESR & ESL of a DC-Link Capacitor Custom fixture details

1. User Compensation to set zero plane of measurement

The short; we use a low-inductance short where the sensing lines (Hpot) run perpendicular to the driving lines (Hcur)

Now let's jump to LabOne to run the measurement...

Live measurement

MFIA

- **1.** Measurement of ESR and ESL of a DC-Link Capacitor
- P The fixture
- Image: The short measurement
- **First measurement of RealZ (ESR) and Ls (ESL)**
- Second Measurement
- **Repeat of First to show repeatability**
- **Analysis of sweep using the LabOne Math tools**

Case Study: ESR & ESL of a DC-Link Capacitor Key measurement features

- \boxdot Low baseline of Real Z (ESR) around 50 $\mu\Omega$
- **C** Low baseline of Ls (ESL) at pH level
- Image: Measurement of ESR & ESL confirms Datasheet
- **Frequency dependent expands DUT Knowledge**
- Reproducibility very high thanks to custom
 Fixture

MFIA Applications

DC-Link Capacitor Measurements

Characterization of low-ESR/ESL

- Image: MFIA measurement over 1 kHz to 5 MHz
- Image: Provide the systemImage: SystemImage: Provide the systemSystemImage: Provide the systemSystem<
- $\ensuremath{\mathbb{P}}$ Low measurement baseline 20 $\mu\Omega$ / 2 pH
- \square ESR 0.7 m Ω agrees with expectations
- **ESL 9.5 nH agrees with expectations**
- Repeatable even after reseat
- Image: Advanced fixture required
- Image: Work in 4-terminal
- S-L User compensation

Multi-parameter Overview Sweep

Thank you.

MFIA meets the challenges of impedance characterization today and tomorrow

Contact us today

www.zhinst.com