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Composite Waveform Hypothesis 
Edward Herbert Revised December 7, 2014 

The Pilot Project core loss study sponsored by PSMA at Dartmouth analyzed the composite 

waveform hypothesis and determined that: “Despite the minor discrepancies, the loss prediction 

method yields higher accuracy, and is easier to use, than other methods for non-sinusoidal 

waveforms.” 

The “minor discrepancies” largely are attributable to loss of energy in the core during off-time 

between pulses when the duty-ratio is less than unity (the off-time phenomenon). 

PSMA sponsored studies at Dartmouth 

The Pilot Project began in the Spring of 2009.  Data was taken for one ferrite core and one 

powdered metal core.  It was observed that increasing the off-time between excitation pulses 

increased the core loss per cycle in the ferrite core.1 

The Phase II Project began in the Spring of 2010.  The Phase II project tested the composite 

waveform hypothesis on a variety of cores of different materials, with emphasis on ensuring that 

the off-time core loss phenomenon was not just a test rig or test procedure artifact.2 

The Phase II study confirmed that the off-time phenomenon is seen on a variety of cores of 

different shape and material, and it provided a large amount of data for further analysis. 

The off-time core loss phenomenon was verified independently by Jonas Mühlethaler.3 

Herbert curves 

The Herbert curve is an alternative way of displaying core loss data in a form that is directly 

useable for calculating core loss for low duty-ratio rectangular excitation using the composite 

waveform hypothesis.  For more accurate loss predictions for a specific component, core loss 

data can be taken on that component, which avoids the complexity and errors of trying to convert 

bulk material data to various core shapes and winding configurations. 

                                                 

1 Testing Core Loss for Rectangular Waveforms, February 7, 2010 by Charles R. Sullivan and John H. Harris, 

Thayer School of Engineering at Dartmouth and Edward Herbert.  The Pilot Project data can be downloaded from 

http://www.psma.com/coreloss/pilot 

2 Testing Core Loss for Rectangular Waveforms, Phase II Final Report, 21 September 2011 by Charles R. 

Sullivan and John H.Harris; Thayer School of Engineering at Dartmouth.  The Pilot Project data can be downloaded 

from http://www.psma.com/coreloss/phase2 

3 Improved Core Loss Calculation for Magnetic Components Employed in Power Electronic Systems, 

Muhlethaler, J.;   Biela , J.;   Kolar , J. W.;   Ecklebe , A.;   Power Electronic Systems Laboratory, Zurich, 

Switzerland; IEEE Transactions on Power Electronics, Vol. 27, No. 2, February 2012. 

http://www.psma.com/coreloss/pilot.pdf
http://www.psma.com/coreloss/pilot
http://www.psma.com/coreloss/phase2.pdf
http://www.psma.com/coreloss/phase2
http://www.psma.com/sites/default/files/uploads/files/02_Improved_Core-loss.pdf
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\Use rectangular excitation 

Core loss data traditionally are taken using sine wave excitation.  Most power converters use 

rectangular wave excitation, often at reduced duty-ratio.  It is recommended that square-wave 

excitation be used for core loss testing. 

 

Sine wave data would make more sense if it were possible to apply Fourier analysis, but Dr. 

Sullivan showed that core losses of non-sinusoidal waveforms cannot be accurately predicted by 

separately examining the Fourier components of the waveform.4 

Use electrical units 

Core loss traditionally is calculated using magnetic units and frequency.  Magnetic units are 

unfamiliar to circuit design engineers, and converting between magnetic units and electrical units 

is a source of confusion and error.  To graph core loss as a function of flux density B̂ , the flux 

density B̂  must be calculated.  Graphing as a function of the excitation voltage V and pulse-

width t requires no conversion–the points are just plotted. 

Avoid area, volume, density and turns 

Core loss tables traditionally give the results in power density (W/m3). 

If the focus is the core loss of a particular component, the geometric calculations can be avoided 

by measuring the loss of that specific component.  In the Herbert curves, the x-axis is the pulse-

width of the square-wave excitation in time µs, the graphs are curves of constant applied 

excitation voltage V, and the loss is read directly as power in watts W on the y-axis. 

This avoids converting to and from magnetic units, and avoids all of the geometric density 

calculations, each a possible source of error.  By taking data using a specific component, all of its 

dimensions and physical idiosyncrasies are accounted for in the data, so arcane parameters such 

as “effective core area” and “effective core volume” are avoided. 

If the data is for an un-wound core, the voltage may be expressed as volts/turn. 

If the core loss graph is for a material, length, area, flux density and power density units cannot 

be avoided.  The voltage is expressed as volts per turn meter2, and the power is watts per meter3. 

                                                 

4 Testing Core Loss for Rectangular Waveforms, Phase II Final Report, 21 September 2011 by Charles R. 

Sullivan and John H.Harris; Thayer School of Engineering at Dartmouth 

http://www.psma.com/coreloss/phase2.pdf
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Core loss Graphs 

A representative traditional core loss graph is shown on the left below.  The loss is given as 

mw/cm3, requiring determination of the volume and multiplying.  The x-axis is in flux density 

B̂ , requiring a fairly complicated calculation of voltage, frequency and cross-sectional area. 

By contrast, a representative Herbert core loss graph for a component is shown on the right.  The 

data are taken using square-wave excitation, with the x-axis being the pulse-width and the 

various curves being the applied voltage with a 5-turn winding.  The core loss is read directly as 

Watts. 

 

 

Traditional core loss graph: 

Power density vs flux density B̂  for various 

frequency f curves. 

 
 

The graph below uses square-wave data 

from Phase III, for the runs mi12-2-001 

through mi12-2-045. 

Magnetics Inc. F-42206 toroid core with 

five turns.   

 

The Herbert core loss graph: 

Power vs pulse width for various applied 

square-wave excitation voltages. 

The test run are the same for either style of graph:  Each point is a test.  Excitation of a certain 

waveform, frequency and voltage is applied to the core, and its loss is measured. 
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Correlation of the traditional curves and the Herbert curves 

Exactly the same tests are run to generate either the traditional core loss curves or the Herbert 

curves.  However, if the goal is to design pulse-width-modulated (pwm) power converters with 

low duty-ratio rectangular pulses, it is preferred to start with square-waves. 

In theory, a traditional graph could be converted to a Herbert graph, and vice-versa.  The 

problem arises in writing the formulae with sufficient accuracy so that the conversion factors can 

be applied.  The familiar Steinmetz equation can be converted, but it is straight line 

approximation (on a log-log graph) of a curved function, and the errors can be large. 

Some properties of the core loss are much easier to visualize on the Herbert curves.  For a given 

core with a given winding and excitation voltage, it is well known that the losses decrease as the 

pulse-width decreases (frequency increases).  That is easily seen in the Herbert curve, but almost 

impossible to visualize in the traditional curve.  It also can be seen very easily that the core loss 

decreases with frequency only to a point, then it reverses and the losses increase. 

Low duty-ratio rectangular excitation 

Many power converters use low duty-ratio rectangular wave excitation.  While there are many 

possibilities, three waveforms are particularly important, “expanded” waveform, “buck” 

waveform, and “asymmetrical” waveform, as shown below.  In the expanded waveform, the 

pulse-width and voltage are constant, but the period increases as off-time is inserted between the 

pulses.  In the buck curves, the period and the flux in volt-seconds are constant.  As the pulse-

width is decreased (increasing off-time), the voltage is increased such that the voltage * time = a 

constant.  The assymetrical wave-form, shown on the right above, has no off-time, but the 

voltage of the excitation differs for the positive and negative pulses.  In all cases, the flux must 

be equal at steady state conditions, or flux walking will occur.  This means that the product of the 

voltage and time is equal for the positive and negative portions of the cycle. 

          

Extensive data were taken for expanded excitation in the Dartmouth Core Loss studies.  

Unfortunately, no core loss data was taken for buck curves.  Data were taken for asymmetric 

excitation, but its validity is doubtful, as a blocking capacitor was used. 
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Composite waveform hypothesis. 

The premise of the composite waveform hypothesis is that the core loss can be determined by the 

voltage and pulse-width.  An isolated pulse, as in a low duty-ratio waveform, is hypothesized to 

have the same loss as a pulse of the same amplitude and pulse-width in a square-wave.  If that 

were true, the losses of low duty-ratio waveforms could be estimated from square-wave data. 

 

That proved not to be the case. 

 

Adding off-time between the pulses increased the loss per pulse significantly. 

Ferrite core 

The off-time effect was more pronounced in the ferrite core.  The effect was quite strong, with 

energy increases as much as 30 percent. 

A lot of work was done taking extensive data and ensuring to the extent possible that the effect 

was not due to test rig anomalies. 
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Core loss calculations using the composite waveform hypothesis 

The figures below define pulse-width and duty-ratio:  In all cases, the pulses are repetitive 

steady-state pulses, as would be generated in a pwm converter at stead-state conditions. 

For a square-wave excitation, t is the pulse-width and T is the period.  The duty-ratio D is 1.0.  

The core loss is read directly on the Y axis for the corresponding excitation voltage curve, 

though interpolation is necessary if the excitation voltage falls between the curves.  (Use caution, 

interpolating log curves is tricky.). 

For expanded pulsed excitation, t is the pulse-width and T is the period.  The duty-ratio D is  

2 * t / T.  To estimate the core loss, read the core loss on the Y axis for the corresponding 

excitation voltage curve and pulse width t, then multiply the result by the duty-ratio D. 

For an asymmetrical pulsed excitation, the volt-seconds must be equal for the positive and 

negative pulses.  T is the period, t1 is the positive pulse-width, t2 is the negative pulse-width, V1 

is the excitation voltage of the first pulse, and V2 is the excitation voltage of the second pulse.  

Two duty-ratios are defined, D1 = t1 / T and D2 = t2 / T. 

To estimate the core loss for the asymmetrical waveform, first estimate the power of the positive 

pulse by reading the power on the Y axis for the corresponding its excitation voltage V1 and 

pulse width t1, then multiply the result by its duty-ratio D1.  Next, estimate the power of the 

negative pulse by reading the power on the Y axis for the corresponding its excitation voltage V2 

and its pulse width t2, then multiply the result by its duty-ratio D2.  Add the partial results to get 

the total estimated core loss. 
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Times and duty-ratios defined. 

 

The Herbert curve shown above is for a Magnetics Inc. F-42206 toroid core with five turns.  The 

curves are the square-wave excitation voltage at the terminals, so the volts/turn would be 1/5th.  

The x-axis is the pulse width t, NOT the period.  Power is read directly on the Y axis. 


