

Ceramic Capacitors for RF Applications: PSMA (Virtual) Capacitor Workshop 2020

Outline

What is RF?

Capacitor Basics

RF Capacitors

Properties and Characterization KEMET CBR Series

RF Overview

- Low MHz to 300GHz.
- Higher frequency ranges allow for:
 - More use of the frequency spectrum
 - Efficiency in propagating signals from one point to another
 - Reduction in size of components such as antennas.
- Markets
 - Telecom
 - Medical
 - IoT
 - Autonomous Driving
 - Military, Space and Aeronautics, etc

© KEMET Electronics. All Rights Reserved.

Table of IEEE bands ^[4]						
Band	Frequency range	Origin of name [citation needed]				
HF band	3 to 30 MHz	High Frequency				
VHF band	30 to 300 MHz	Very High Frequency				
UHF band	300 to 1000 MHz	Ultra High Frequency				
L band	1 to 2 GHz Long wave					
S band	2 to 4 GHz	Short wave				
C band	4 to 8 GHz	Compromise between S and X				
X band	8 to 12 GHz	Used in WW II for fire control, X for cross (as in crosshair)				
K _u band	12 to 18 GHz	Kurz-under				
K band	18 to 27 GHz	German Kurz (short)				
K _a band	27 to 40 GHz	Kurz-above				
V band	40 to 75 GHz					
W band	75 to 110 GHz	W follows V in the alphabet				
G band	110 to 300 GHz					

3

What is RF? Capacitor Applications

Capacitor Basics

A Refresher

© KEMET Electronics. All Rights Reserved.

Capacitor Basics

C = Design Capacitance
K = Dielectric Constant
A = Overlap Area
d = Ceramic Thickness
n = Number of Electrodes

$$C = \frac{\varepsilon_0 K A(n-1)}{d}$$

Capacitor Basics The Ideal Capacitor

Ideal Capacitor

- Pure Capacitance
- No resistance (ESR)
- No Inductance (ESL)

10pF example

Ideal Model

Z=Capacitive Impedance or Reactance

 $Z = \frac{1}{2^* \pi^* Frequency^* Capacitance}$

Capacitor Basics Real Capacitor

Real Capacitor

- C Nominal capacitance
- **ESR** Series resistance (terminations, dielectric, and electrodes)
- ESL Series inductance

10pF example

Where: Z = Total Impedance ESR = Equivalent Series Resistance X_{C} = Capacitive Reactance = 1/(2 π fC) X_{L} = Inductive Reactance = (2 π f) (ESL)

Capacitor Basics Closer Look at ESR

© KEMET Electronics. All Rights Reserved.

RF Capacitors

What's the Difference?

"Regular" Capacitor

RF Capacitor

25MA

RF Capacitor Basics Some Key Parameters

ESR

The resistance of the capacitor which includes resistance due to the dielectric as well as electrodes.

Q

Quantifies the amount of energy stored versus how much is dissipated as heat. It represents the efficiency of the capacitors. Higher Q's are needed for RF capacitors to limit power dissipation.

SRF

Shows where the total impedance is no longer capacitive and begins an upward trend (becomes inductive). Higher SRF = better RF capacitor, since some applications require the designer to stay well below the SRF.

TCC

Determines how much the capacitance values will shift at different temperatures. RF capacitors need to be very stable over a broad temperature range.

$$Q = \frac{Xc}{ESR} = \frac{1}{DF}$$

$$SRF = \frac{1}{2 * \pi * \sqrt{C * L}}$$

COG → ppm/ °C level X7R → % level

So, What is an RF Capacitors

An RF capacitor is a capacitor whose "characteristics" are <u>favorable at RF frequencies</u>

Characteristic	RF Capacitor Requirements
ESR (Effective Series Resistance)	RF Capacitors are designed to have the lowest possible ESR. This allows for minimal power loss at RF frequencies.
Q (Quality Factor)	RF Capacitors are designed to have a high Q.
SRF (Series Resonant Frequencies)	RF Capacitors are designed to have high SRF allowing for a higher operating frequency range.
TCC (Temperature Coefficient of Capacitance)	Dielectric chosen to have minimal capacitance shift across entire operating temperature range.

So, for RF capacitors, materials are chosen and the design is optimized so that the capacitors' characteristics are well suited at the higher frequencies.

Optimizing for RF

Design	Design Goal	How?
Dielectric	Low LossTemperature and Voltage Stability	High Q class 1 dielectrics such as C0G or NPO
Electrodes	Low LossLow Inductance	Non-ferrous electrode materials
Construction / Physical Geometry	Low LossLow Inductance	Consider square case size

RF Capacitors Why Copper BME

Copper BME = Lower ESR = Better power dissipation = Ideal for High Frequency applications

RF Capacitor Properties and Characterization

ESR and Q

Low Frequency Design vs RF Design

Impedance / ESR Approach

S-Parameter Network Approach

S-Parameters

© KEMET Electronics. All Rights Reserved.

S-Parameters

Reflected

S11

Transmitted

S-Parameters How Designers Use Them?

- RF designers use simulation tools to run analysis on circuits similar to P-Spice.
 - Keysight's Advanced Design Systems (ADS)
 - Keysight's Eagleware Genesys
 - AWR's Microwave Office

Schematic of circuit to simulate S-Parameter file in Eagleware Genesys

Agilent Technolog	gies,E5071C,MY4	6109480,A.09.54					
!Date: Tue Oct 11	20:23:29 2011						
!Data & Calibratio	on Information:						
<pre>!Freq S11:SOLT2</pre>	(ON) 521:50LT	2(ON) 512:50LT	2(ON) 522:50L	T2(ON)			
# Hz S dB R 50							
5000000 -3	3.760025e-001	-1.745230e+001	-1.070520e+001	7.279950e+001	-1.070309e+001	7.281087e+001	-3.737441e
74937500 -8	8.168459e-001	-2.525207e+001	-7.644260e+000	6.481506e+001	-7.641570e+000	6.482366e+001	-8.142310e
99875000 -1	1.360752e+000	-3.223251e+001	-5.704231e+000	5.780029e+001	-5.702769e+000	5.781035e+001	-1.357891e
124812500 -1	1.973216e+000	-3.834190e+001	-4.391318e+000	5.161158e+001	-4.389353e+000	5.162188e+001	-1.970618e
149750000 -2	2.616565e+000	-4.365442e+001	-3.463572e+000	4.626452e+001	-3.460819e+000	4.627317e+001	-2.613514e
174607500	200022-000	4 027020001	2 204025-000	4 4 6 3 9 6 3 - 1 0 0 4	2 202025-000	4 4 6 4 5 3 6 - 0.04	2 266270-

What about the substrate?

High Frequency (RF Capacitors)

- Parasitic capacitances and ESL dependent on
 - Substrate properties
 - Height
 - Er
 - Loss Tangent
 - Metal Thickness
 - Pad Dimensions
 - Length
 - Width
 - Spacing

What about the substrate?

Modelithics Global Model[™]

CAP_KMT_0805_107_4 Part=KEMET CBR08 C=47 pF Sim_mode=0 - Full Parasitic Model Tolerance=1 PADW=1.45 mm PADL=1 mm PADG=0.6 mm SUBST=5mil FR4

#Modelithics®

- Measurement Based
- Part Value Scalable
- Substrate Scalable
- Pad Scalable

What about the substrate?

Poor Fit

Figure 1 • Fabricated 250 MHz LPFs. "Good" approach (top image), "Better" approach (middle image), "Best" approach (bottom image); measurement reference planes indicated by the red arrows.

25MA

Figure 6 • Ideal "good" LPF with TL elements; measured data (symbols) vs model performance (solid line). S21 (blue) and S11 (red); broad-band (left) and narrow-band (right).

Figure 7 • Full parasitic "good" LPF; measured data (symbols) vs model performance (solid line). S21 (blue) and S11 (red); broad-band (left) and narrow-band (right).

Excellent Fit

KEMET CBR Series

KEMET CBR Series

	Ultra High Q-CBR Squared Series Offering								
Case Size	Typical ESR (10pF @ 1 GHz)	Dielectric	Operating Frequency Range	Operating Temperature Range	Temp Coef. (TCC)	Capacitance Range	Max Voltage		
0505 (<mark>NEW</mark> !)	< 0.068	C0G	1MHz - 50GHz	–55°C to +125°C	0 ±30 ppm/°C	0.4pF - 100pF	250		
	High Q-CBR Series Offering (EIA Case Sizes)								
Case Size	Typical ESR Ohms (10pF @ 1 GHz)	Dielectric	Operating Frequency Range	Operating Temperature Range	Temp Coef. (TCC)	Capacitance Range	Max Voltage		
0201	-	C0G	1MHz - 50GHz	–55°C to +125°C	0 ±30 ppm/°C (0 ±60 ppm/°C for 0201 case size ≥ 22 pF)	0.1pF - 33pF	50		
0402	< 0.095					0.1pF - 100pF	200		
0603	< 0.100					0.3pF - 100pF	250		
0805	< 0.085					0.3pF - 100pF	500		

Copper Electrodes

RoHS

© KEMET Electronics. All Rights Reserved.

(()) HIQ-CBR RF & MICROWAVE

Summary

- RF adoptions continues to grow
- RF capacitors are designed and optimized to operate at higher frequencies
- High frequencies bring unique design challenges
- Design tools are readily available

Thank You!!!

Submit your questions to the Q&A window