

Aluminum Electrolytic Capacitors – Failure Modes

APEC 2018 in San Antonio Capacitor Workshop

Short Introduction of Today's Presenter

Stephan Menzel

Product Marketing Manager & Leader Product Marketing eiCap Capacitor Division

+49 7942945 5886

stephan.menzel@we-online.com

www.we-online.com

Background:

- More than 10 years of work experience in electronics industry
- Background in Global Sales & Marketing,
 Industrial Engineering and Quality Management
- In charge for strategic sales conception and global market penetration of capacitor division at WE

Agenda

Definition of Failure

• End of Lifetime = Failure?

- E-Cap Failure Modes
- Failures & Root Causes
- Common Failures

Definition of Failure

Definition of Failure

Manufacturers job at production to minimize such cases

Product failures can happen at any time like:

- Early Birds occur at new devices
 - Early Failures
- Unexpected Failures
 - Random Failure
- At the End of Lifetime
 - Wear Out Failures

Depending on dimensioning

>> overall observed failures result in Bath Tub Curve

End of Lifetime = Failure?

What means Endurance, Load Life and Useful Life?

End of Lifetime = Failure?

Aluminum Electrolytic Capacitor

Test Condition	Endurance / Evaluation Criterion	
Life Time	1000h@105°C	
Voltage	Full Rated Voltage	
Current	Full Ripple Current	
ΔC	Within +/- 20% of Initial Value	
DF	< 200% of initial value	
Leakage Current	Initial value	

Aluminum Polymer Capacitor

Test Condition	Endurance / Evaluation Criterion
Life Time	2000h@105°C
Voltage	Full Rated Voltage
Current	-
ΔC	Within +/- 20% of Initial Value
DF	< 150% of initial value
ESR	< 150% of initial value
Leakage Current	Initial value

Endurance and Useful Life as example with WCAP-AIG8 series

WE Matchcode	WCAP-AIG8		
Life	Endurance	Useful life	
Time	2000 h	4000 h	
Test condition	85°C, V _{R,} I _R	85°C, V _{R,} I _R	
Requirements	1.ΔC/C≤±20%; 2.DF≤2 times of the specified value; 3.LC≤specified value; 4.Capacitor without visible damage.	1.ΔC/C≤±40%; 2.DF≤4 times of the specified value; 3.LC≤specified value; 4.Capacitor without visible damage.	

- It is necessary to check this for each manufacturer because it is not standardized!
- Not the specification of the manufacturer finally determines the lifetime, it will be the dimensioning and selection of the proper capacitor for your design
 - >> How much capacitance drift is acceptable and still the application is running properly? <<

Major Factors for Aging of E-Caps

- The following factors mainly accelerate the aging behavior of an e-cap:
 - Temperature
 - electrolyte loss / dry out
 - leakage current >> oxide degradation

- Ripple Current
 - self heating >> electrolyte loss / dry out

- Voltage Level
 - leakage current >> oxide degradation

These effects result in:

- >> capacitance decrease
- >> increase of ESR
- >> DF change

Leakage Current Increase

Short Circuit

Capacitance Drop /
ESR Change /
DF Change

Electrolyte Leakage

Open Circuit

Open Vent

Failures & Root Causes

All effects result in an increase of internal pressure:

Root Causes during Production

Root Causes within Application or by Aging

Thanks for your attention!

