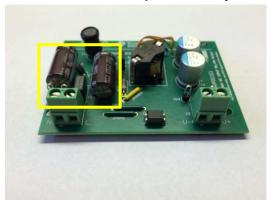
AGING AND IN-CIRCUIT CHARACTERIZATION OF ALUMINUM ELECTROLYTIC CAPACITORS

Marcus Sonst
Application Engineer Power Management

ROHDE&SCHWARZ

Make ideas real


CONTENT

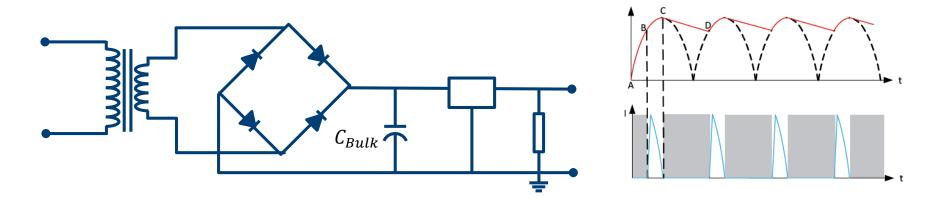
- ► Aluminum Electrolytic Capacitors In AC-DC Power Converter
- ► Common Circuits For Offline AC-DC Power Supplies
- ► Capacitance Calculation And Equivalent Series Resistance Fundamentals
- Basic and Extended Circuit Simulation
- Measurement Hardware
- ► In-Circuit Measurement And Results Capacitance, ESR and Current Ripple
- ▶ Lifetime Prediction
- Conclusion

AL-ELECTROLYTIC CAPACITORS IN AC-DC POWER SUPPLIES

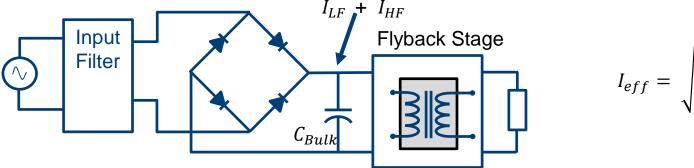
- ▶ It Is Still The Key Component In Power Supplies For Several Reasons
 - Provide Large Capacitance At Higher Voltage
 - Very Price Attractive
 - Volume Per μF Is Very Good

Aluminum Electrolytic Capacitor Is The Relevant Component Of The Overall PSU Life Time!!!!

AGING EFFECTS OF AL-ELECTROLYTIC CAPACITOR


- ► Impacts On Aging Of Aluminum Electrolytic Capacitors Are:
 - Temperature
 - Loss Of Electrolytic
 - Leakage Current >> Oxide Degradation
 - Ripple Current
 - Local Heating >> Loss Of Electrolytic
 - Voltage
 - Leakage Current

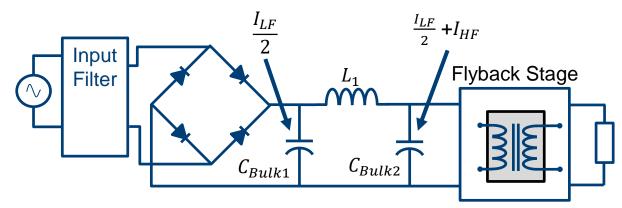
Loss Of Capacitance And An Increasing Equivalent Series Resistors (ESR)


LINEAR POWER SUPPLY CIRCUIT

- ► They Still Need A Storage Element To Smooth The Rectified Pulsating Voltage (Low frequency) After The Bridge Rectifier
- ▶ Use Of The Large Bulk Capacitor Based On Aluminum Electrolytic Technology Is The Preferred Choice

SWITCHING-MODE POWER SUPPLY CIRCUIT

- In Many Applications, Overall Efficiency Requires The Use Of Power Supplies Based on SMPS principle
 - The Bulk Capacitor Is Still Required For Smoothing The Pulsating DC Voltage
 - An Additional HF Current Component Has To Be Considered



$$I_{eff} = \sqrt{\frac{I_{LF}^2}{K_{LF}^2} + \frac{I_{HF}^2}{K_{HF}^2}}$$

The Maximum Current Ripple Is Typically Defined At Line Frequency (100Hz)

EMI OPTIMIZED POWER SUPPLY CIRCUIT

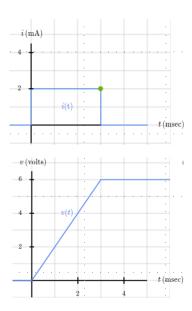
- ► A Small Change In The Previous Setup May Solve EMI Challenges
 - An Additional Bulk Capacitor And Filter Inductor Is Used To Create A PI Filter
 - Low Frequency Content Will Flow In Both Capacitors
 - Low And High Frequency Content Will Flow Only In C_{bulk2}

Lifetime Of Bulk Capacitors Are Different!!

HOW TO CALCULATE CAPACITANCE FROM MEASURED CURRENT AND VOLTAGE

▶ Basic Math Fundamentals

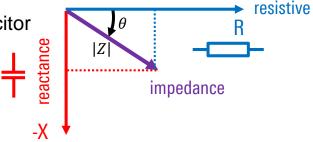
The Integral Of The Current Over Time Can Be Expressed As The Charge


$$Q = \int_{t1}^{t2} i(t)dt [As]$$

The Voltage Across The Capacitor Is Expressed By The Integral And The Scale Factor C (Capacitance)

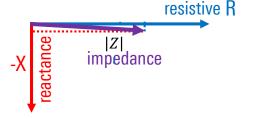
$$u(t) = \frac{1}{C} * \int_{t_1}^{t_2} i(t)dt$$

The Capacitance Can Be Expressed Using The Formulas Above


$$C = \frac{\Delta Q}{\Delta U}$$

ESR CALCULATION AT SWITCHING FREQUENCY

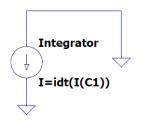
► Impedance Of Electrolytic Capacitor


$$Z = \sqrt{ESR^2 + X_C^2}$$

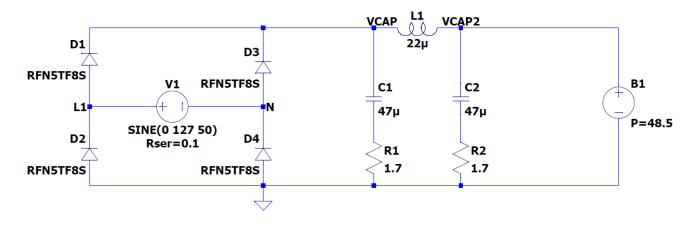
► Capacitive Reactive Can Be Neglected At Switching Frequency

$$Z = \sqrt{ESR_{fsw}^2 + X_{C_fsw}^2} \cong ESR_{fsw}$$

$$X_{C_{-}fSW} = \frac{1}{2*\pi * f_{SW} * C}$$

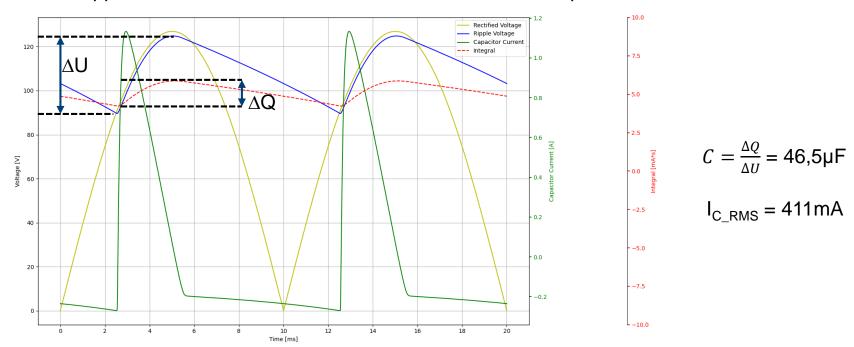


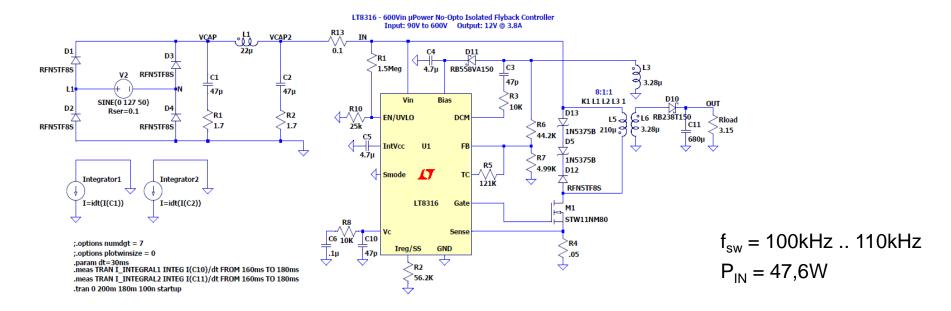
► ESR Can Be Calculated From Voltage And Current Switching Peak To Peak


$$Z = \frac{U_{C_fsw}}{I_{C_fsw}}$$

$$ESR_{fsw} = \frac{U_{C_fsw}}{I_{C_fsw}} = \frac{U_{C_fsw_peak}}{I_{C_fsw_peak}}$$

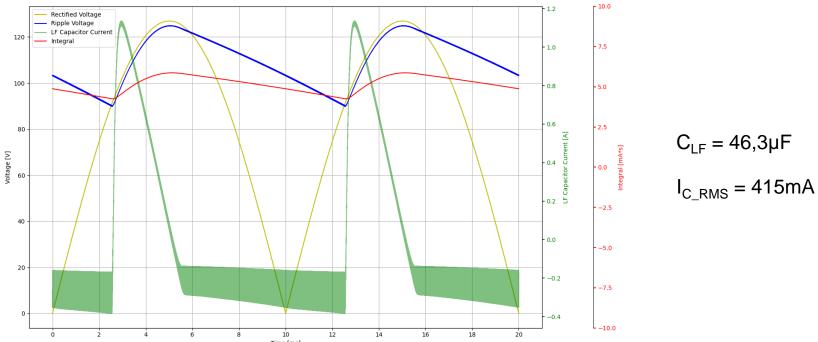
BASIC CIRCUIT SIMULATION – LF RIPPLE


- .options numdgt = 7 .options plotwinsize = 0
- .four 100 10 10 V(VCAP)
- .four 100 10 10 I(C1)
- .param dt=20ms
- .meas TRAN I_INTEGRAL INTEG I(C1)/dt FROM 160ms TO 180ms
- .tran 0 200m 180m 100n startup

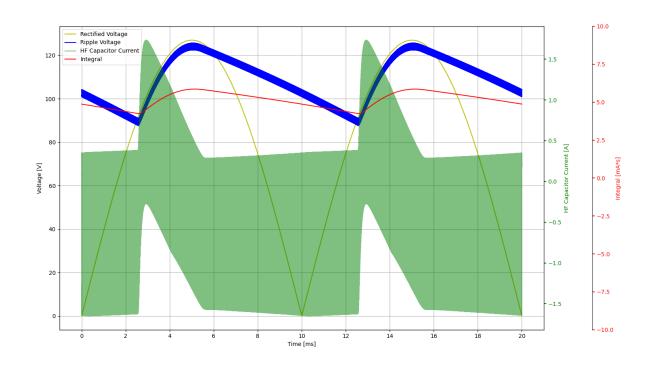

SIMULATION RESULTS

► LF Ripple Simulation is used to derive RMS current and Capacitance

EXTENDED SIMULATION CIRCUIT


Contribution Of The Flyback Converter Has To Be Taken Into Account For Lifetime Calculation

SIMULATION RESULTS @ LF CAPACITOR

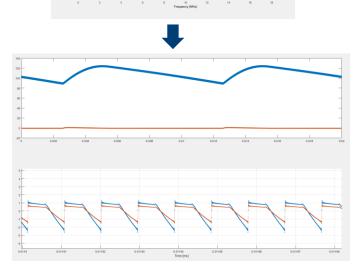

► LF Ripple Simulation To Derive RMS Current And Capacitance

$$I_{C RMS} = 415 \text{mA}$$

SIMULATION RESULTS @ HF CAPACITOR

 $C_{HF} = 46,4 \mu F$ $I_{RMS_Effective} = 741 mA$ $I_{RMS_HF} = 688 mA$

ESR ESTIMATION BASED ON SIMULATION DATA


▶ Digital FIR Filter (Band Pass Filter) Can Be Used To Measure Peak To Peak At Switching Frequency

► Filter Design Is Based On Matlab Filter Designer

► ESR Calculation Within Matlab

$$ESR_{fsw} = \frac{U_{C_fsw_peak}}{I_{C_fsw_peak}} = \frac{4.133 \, V}{2.435 A} = 1.697 \Omega$$

Very Close To The Simulation Model!!

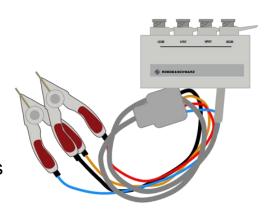
PROBING

- ► What Kind Of Hardware Is Required To Derive The Capacitance, Ripple Current And ESR Value Within The Circuit Operation.
 - High Voltage Differential Probe
 - R&S ZHD07 Offset Capability And Sufficient Bandwidth

- Current Clamp Probe or Rogowski Probe
- R&S RT-ZC20B Offers Very Good Bandwidth
- Rogowski Probe Is easy To
 Attach To The Circuit (AC Current Only)

OSCILLOSCOPE

- ► An Device With The Following Characteristic Is Essential:
 - Bandwidth Of At Least 1GHz Is Required
 - Use Of Customized Digital Filter
 - Integral Math Function Should Be Used To Calculate Q Charge


- Measurement Function Like RMS, Peak to Peak, etc.
- Powerful Curser Setting Supports The User To Extract The Capacitance

The RTO6 Is The Perfect Choice To Perform The Challenging Task

LCR-METER

- ▶ It Was Used To Validate The In-Circuit Measurements
 - R&S LCX100/LCX200 LCR Meter Provides High Accuracy
 - Basic Accuracy Up To 0.05%
 - It provides Many Different Impedance Measurement Functions
 - ESR, ESL And Capacitance Is Needed

CAPACITANCE EVALUATION PART I

► Capacitance Measurement At Line Frequency

HD Mode with BW Limit 10kHz (16Bit)

$$C = \frac{\Delta Q}{\Delta U} = \frac{603 \,\mu A*s}{13.24 \,V} = 45.5 \,\mu F$$

DUT Parameter: 230VAC @ lout = 20V/2A

CAPACITANCE EVALUATION PART II

► A Combination Of Low and High Frequency Content Is Present

HD Mode With BW Limit 10kHz (16Bit) (Switching Frequency Rejection)

$$C = \frac{\Delta Q}{\Delta U} = \frac{625 \,\mu A*s}{13.4 \,V} = 46.7 \,\mu F$$

DUT 230VAC @ lout = 20V/2A

RIPPLE CURRENT MEASUREMENT PART1

► Ripple Current Measurement At Line Frequency

HD Mode with BW Limit 50MHz (16Bit)

$$I_{RMS_LF} = 254 \text{ mA}$$

 $I_{RMS_Total} = 255 \text{ mA}$

DUT 230VAC @ lout = 20V/2A

RIPPLE CURRENT MEASUREMENT PART II

► Ripple Current Measurement At Line Frequency, Switching Ripple And The Total Ripple

HD Mode with BW Limit 50MHz (16Bit)

 $I_{RMS_LF} = 265 \text{ mA}$

 $I_{RMS_Total} = 540 \text{ mA}$

 $I_{RMS_HF} = 470 \text{ mA}$

DUT 230VAC @ lout = 20V/2A

ESR IN-CIRCUIT MEASUREMENT @ SWITCHING FREQUENCY

► Ripple Voltage And Current Measurement At Switching Frequency

Results (@25°)

 $U_{PP} = 1,02 \text{ V}$

 $I_{PP} = 1.85 A$

 $ESR = 551 \text{ m}\Omega$

 $F_{sw} = 285 \text{ kHz}$

Bandpassfilter (FIR)

 $F_{\text{stop1}} = 13 \text{ kHz}$

 $F_{pass1} = 125 \text{ kHz}$

 $F_{pass2} = 11 \text{ MHz}$

 $F_{stop2} = 11,25 \text{ MHz}$

CAPACITANCE AND ESR COMPARISON

	In-Circuit Measurement		LCR-Bridge Measurement		Failure [%]	
	LF-Cap @ 100Hz	HF-Cap @ 100Hz	LF-Cap @ 1kHz	HF-Cap @ 1kHz	LF-Cap	HF-Cap
Capacitance [µF]	45,5	46,7	43,4	43,8	4,6	6,2
Capacitance [µF] (2000 h)	44,0	43,1	41,3	41,5	6,1	3,7
ESR [Ω] @ 285 kHz	X	0,55	0,710	0,628	X	-13
ESR _{2000h} [Ω] @ 285 kHz	X	2,91	4,049	3,619	X	-24

RIPPLE CURRENT AND TEMPERATURE RESULTS

	Current Type [mA]	In-circuit T _{core} [°C] Measurement		T _a [°C]		
Position		LF-Cap	HF-Cap	LF- Cap	HF-Cap	
New Capacitor	I _{RMS_Total}	255	540	39,9 42	42,2	25,6
	I _{RMS_HF}	X	470			
	I _{RMS_LF}	254	265			

LIFETIME CALCULATION

▶ Based On Core Temperature Measurement

Lifetime Calculation (Law of Arrhenius)

$$L_x = L_0 * 2^{\left[\frac{T_0 - T_a}{10}\right]}$$

 $L_0 = 10000h$
 $T_0 = 105^{\circ}C$

Lifetime Calculation With New Device

$$L_{x_LF} = 911 \ 392 \ h$$

 $L_{x\ HF} = 777 \ 084 \ h$

Lifetime Calculation With Accelerated Aging

$$L_{x_LF} = 530764 h$$

 $L_{x_HF} = 458865 h$

Most Accurate Calculation But It Requires A Built-In Thermocouple Element

LIFETIME ESTIMATION

▶ Based On Ripple Current Measurement

$$I_{eff} = \sqrt{\frac{I_{LF}^2}{K_{LF}^2} + \frac{I_{HF}^2}{K_{HF}^2}}$$

$$I_{eff_LF_Cap} = 510mA$$

 $I_{eff_HF_Cap} = 756 mA$

$$K_{LF}=0.5$$

$$K_{HF}=1$$

Frequency [Hz]	120	1000	10000	≥ 100000
Multiplier	0.50	0.80	0.85	1.0

Based On Ripple Current Measurement

Current Ripple Including Frequency Multiplier

$$I_{eff} = \sqrt{\frac{I_{LF}^2}{K_{LF}^2} + \frac{I_{HF}^2}{K_{HF}^2}}$$

$$I_{eff_LF_Cap} = 510mA$$

$$I_{eff_HF_Cap} = 756 mA$$

$$I_{eff_HF_Cap} = 756 mA$$

$$I_{Rated} = 1050 mA$$

$$I_{Rated} = 1050$$

$$K_{Ripple} = 2^{\left[\frac{\Delta T_{max} - \Delta T}{5}\right]}$$
$$\Delta T_{Max} = 5K$$

$$I_{Rated} = 1050 \, mA^{\text{Nated}}$$

$$K_{Ripple} = 2^{\left[\frac{\Delta T_{max} - \Delta T}{5}\right]}$$

$$\Delta T_{Max} = 5K$$

$$L_{x} = L_{0} * 2^{\left[\frac{T_{0} - T_{a}}{10}\right]} * K_{Ripple}$$

$$T_{0} = 105^{\circ}C$$

$$K_{Ripple_LF} = 1,693$$

$$K_{Ripple_HF} = 1,454$$

$$L_{x_LF} = 1532 328 \, h$$

$$L_{x_HF} = 1 316 010 \, h$$

$$\Delta T_{LF} = 1.2 K$$

 $\Delta T_{HF} = 2.6 K$

$$K_{Ripple_LF} = 1,693$$

 $K_{Ripple_HF} = 1,454$

$$L_{x_LF} = 1\ 532\ 328\ h$$

 $L_{x_HF} = 1\ 316\ 010\ h$

40°C Should Be Considered For Ta, If The Ambient Temperature Is Below 40°C

CONCLUSION

- ➤ Smart Circuit Simulation Will Provide The First Insight Of Key Values But Cannot Avoid Real Measurements
- ► In-Circuit Measurement Supports The Designer With RMS Ripple Current Measurement To Estimate Lifetime Of An Capacitor In An Easy Way But Is Limited In Accuracy
- ► A Core Temperature Measurement Of The Capacitors Operating In The Application Provides Best Accuracy But Requires More Effort
- ▶ In addition, In-Circuit Measurement Provide Capacitance and ESR Values Within the Application.
- ► LCR-Bridge Measurement Provides Highest Accuracy For Capacitance And ESR Measurements
- ► Lifetime Calculation Of Aluminum Electrolytic Capacitor Is Essential To Estimate The Overall Power Converter Lifetime

RIPPLE CURRENT AND TEMPERATURE RESULTS

	Current Type [mA]	In-circuit Measurement		T _{core} [°C]		T _a [°C]
Position		LF-Cap	HF-Cap	LF- Cap	HF-Cap	
New Capacitor	I _{RMS_Total}	255	540	39,9	42,2	25,6
	I _{RMS_HF}	X	470			
	I _{RMS_LF}	254	265			
Used Capacitor (2000h)	I _{RMS_Total}	232	299	47,4	49,8	25,6
	I _{RMS_HF}	X	217			
	I _{RMS_LF}	232	207			

ESR IN-CIRCUIT MEASUREMENT ACCURACY

► < 5% failure must be accepted

$$ESR * 1.05 > \sqrt{ESR^2 + X_C^2}$$

$$ESR^2 + \left(\frac{1}{2\pi fC}\right)^2 < 1.1025 * ESR^2$$

$$\frac{1}{f*C} < 2.0116*ESR$$

$$f > \frac{1}{2.0116 * ESR * C}$$

$$f > \frac{1}{2.0116 * ESR * C}$$
 $f > \frac{1}{2.0116*1.7*47\mu F} = 6.22kHz$